Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T13:09:44.075Z Has data issue: false hasContentIssue false

Dispersive orderings induced by differences of inter risk measures

Published online by Cambridge University Press:  12 October 2022

Keyi Zeng*
Affiliation:
University of Science and Technology of China
Weiwei Zhuang*
Affiliation:
University of Science and Technology of China
Taizhong Hu*
Affiliation:
University of Science and Technology of China
*
*Postal address: Department of Statistics and Finance, IIF, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China.
*Postal address: Department of Statistics and Finance, IIF, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China.
*Postal address: Department of Statistics and Finance, IIF, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China.

Abstract

In this short note we introduce two notions of dispersion-type variability orders, namely expected shortfall-dispersive (ES-dispersive) order and expectile-dispersive (ex-dispersive) order, which are defined by two classes of popular risk measures, the expected shortfall and the expectiles. These new orders can be used to compare the variability of two risk random variables. It is shown that either the ES-dispersive order or the ex-dispersive order is the same as the dilation order. This gives us some insight into parametric measures of variability induced by risk measures in the literature.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellini, F. and Di Bernardino, E. (2017). Risk management with expectiles. European J. Finance 23, 487506.CrossRefGoogle Scholar
Bellini, F., Fadina, T., Wang, R. and Wei, Y. (2022). Parametric measures of variability induced by risk measures. Insurance Math. Econom. 106, 270–284.CrossRefGoogle Scholar
Bellini, F., Klar, B. and Müller, A. (2018). Expectiles, Omega ratios and stochastic ordering. Methodology Comput. Appl. Prob. 20, 855873.CrossRefGoogle Scholar
Bellini, F., Klar, B., Müller, A. and Rosazza Gianin, E. (2014). Generalized quantiles as risk measures. Insurance Math. Econom. 54, 4148.CrossRefGoogle Scholar
Belzunce, F., Hu, T. and Khaledi, B.-H. (2003). Dispersion-type variability orders. Prob. Eng. Inf. Sci. 17, 305334.CrossRefGoogle Scholar
Bickel, P. J. and Lehmann, E. L. (1976). Descriptive statistics for non-parametric models, III: Dispersion. Ann. Statist. 4, 11391158.CrossRefGoogle Scholar
David, H. A. (1998). Early sample measures of variability. Statist. Sci. 13, 368377.CrossRefGoogle Scholar
Eberl, A. and Klar, B. (2022). Stochastic orders and measures of skewness and dispersion based on expectiles. Statist. Papers. Available at doi:10.1007/s00362-022-01331-x.CrossRefGoogle Scholar
Emmer, S., Kratz, M. and Tasche, D. (2015). What is the best risk measure in practice? A comparison of standard measures. J. Risk 18, 3160.CrossRefGoogle Scholar
Fagiuoli, E., Pellerey, F. and Shaked, M. (1999). A characterization of the dilation order and its applications. Statist. Papers 40, 393406.CrossRefGoogle Scholar
Hickey, R. J. (1986). Concepts of dispersion in distributions: a comparative note. J. Appl. Prob. 23, 914921.CrossRefGoogle Scholar
Klar, B. and Müller, A. (2018). On consistency of the Omega ratio with stochastic dominance rules. In Innovations in Insurance, Risk- and Asset Management, eds K. Glau et al., chapter 14, pp. 367–380, World Scientific.CrossRefGoogle Scholar
Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley.Google Scholar
Saunders, D. J. (1984). Dispersive ordering of distributions. Adv. Appl. Prob. 16, 693694.CrossRefGoogle Scholar
Shadwick, W. F. and Keating, C. (2002). A universal performance measure. J. Performance Measurement 6, 5984.Google Scholar
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.CrossRefGoogle Scholar
Wang, R., Wei, Y. and Willmot, G. E. (2020). Characterization, robustness and aggregation of signed Choquet integrals. Math. Operat. Res. 45, 9931015.CrossRefGoogle Scholar