Published online by Cambridge University Press: 25 February 2021
This paper investigates a financial market where stock returns depend on an unobservable Gaussian mean reverting drift process. Information on the drift is obtained from returns and randomly arriving discrete-time expert opinions. Drift estimates are based on Kalman filter techniques. We study the asymptotic behavior of the filter for high-frequency experts with variances that grow linearly with the arrival intensity. The derived limit theorems state that the information provided by discrete-time expert opinions is asymptotically the same as that from observing a certain diffusion process. These diffusion approximations are extremely helpful for deriving simplified approximate solutions of utility maximization problems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.