No CrossRef data available.
Published online by Cambridge University Press: 19 May 2023
In this paper we consider the problem of averaging for a class of piecewise deterministic Markov processes (PDMPs) whose dynamic is constrained by the presence of a boundary. On reaching the boundary, the process is forced to jump away from it. We assume that this boundary is attractive for the process in question in the sense that its averaged flow is not tangent to it. Our averaging result relies strongly on the existence of densities for the process, allowing us to study the average number of crossings of a smooth hypersurface by an unconstrained PDMP and to deduce from this study averaging results for constrained PDMPs.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.