Hostname: page-component-cb9f654ff-5kfdg Total loading time: 0 Render date: 2025-08-18T18:10:49.879Z Has data issue: false hasContentIssue false

An urn model arising from all-optical networks

Published online by Cambridge University Press:  14 July 2016

John A. Morrison*
Affiliation:
Bell Laboratories
*
Postal address: Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974, USA. Email address: johnmorrison@lucent.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An occupancy model that has arisen in the investigation of randomized distributed schedules in all-optical networks is considered. The model consists of B initially empty urns, and at stage j of the process d j B balls are placed in distinct urns with uniform probability. Let M i (j) denote the number of urns containing i balls at the end of stage j. An explicit expression for the joint factorial moments of M 0(j) and M 1(j) is obtained. A multivariate generating function for the joint factorial moments of M i (j), 0 ≤ iI, is derived (where I is a positive integer). Finally, the case in which the d j , j ≥ 1, are independent, identically distributed random variables is investigated.

Information

Type
Research Papers
Copyright
© Applied Probability Trust 2006 

References

Johnson, N. L. and Kotz, S. (1977). Urn Models and Their Application. An Approach to Modern Discrete Probability Theory. John Wiley, New York.Google Scholar
Kolchin, V. F., Sevastyanov, B. A. and Christiakov, V. P. (1978). Random Allocations. V. H. Winston, Washington, DC.Google Scholar
Morrison, J. A., Saniee, I. and Widjaja, I. (2006). Design and performance of randomized network schedules for time-domain wavelength interleaved networks. Preprint.Google Scholar