Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:19:56.267Z Has data issue: false hasContentIssue false

Selecting a sequence of last successes in independent trials

Published online by Cambridge University Press:  14 July 2016

F. Thomas Bruss*
Affiliation:
Université Libre de Bruxelles
Davy Paindaveine*
Affiliation:
Université Libre de Bruxelles
*
Postal address: Département de Mathématique et ISRO, Université Libre de Bruxelles, Campus Plaine, CP 210, B-1050 Bruxelles, Belgium
Postal address: Département de Mathématique et ISRO, Université Libre de Bruxelles, Campus Plaine, CP 210, B-1050 Bruxelles, Belgium

Abstract

Let I1,I2,…,In be a sequence of independent indicator functions defined on a probability space (Ω, A, P). We say that index k is a success time if Ik = 1. The sequence I1,I2,…,In is observed sequentially. The objective of this article is to predict the lth last success, if any, with maximum probability at the time of its occurrence. We find the optimal rule and discuss briefly an algorithm to compute it in an efficient way. This generalizes the result of Bruss (1998) for l = 1, and is equivalent to the problem of (multiple) stopping with l stops on the last l successes. We then extend the model to a larger class allowing for an unknown number N of indicator functions, and present, in particular, a convenient method for an approximate solution if the success probabilities are small. We also discuss some applications of the results.

Type
Research Papers
Copyright
Copyright © by the Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ano, K. (1989). Optimal selection with three stops. J. Operat. Res. Soc. Japan 32, 491504.Google Scholar
Arnold, B. C., Balakrishan, N., and Nagaraja, H. N. (1998). Records. John Wiley, New York.Google Scholar
Bruss, F. T. (1988). Invariant record processes and applications to best choice modeling. Stoch. Proc. Appl. 30, 303316.Google Scholar
Bruss, F. T. (1998). Sum the odds to one and stop. Res. Rep. IS-P 1998-32, Prob. et Stat., Université Libre de Bruxelles. To appear in Ann. Prob.Google Scholar
David, F. N., and Kendall, M. G. (1966). Symmetric Function and Allied Tables. Cambridge University Press, pp. 17.Google Scholar
Gilbert, J., and Mosteller, F. (1966). Recognizing the maximum of a sequence. J. Amer. Statist. Assoc. 61, 3573.Google Scholar
Praeter, J. (1994). On a multiple choice secretary problem. Math. Operat. Res. 19, 597602.CrossRefGoogle Scholar
Rënyi, A. (1962). Théorie des éléments saillants dans une suite d'observations. Proc. Coll. Comb. Methods (Aarhus Universitet), 104-115.Google Scholar
Rose, J. (1982). A problem of optimal choice and assignment. Operat. Res. 30, 172181.CrossRefGoogle Scholar
Sakaguchi, M. (1978). Dowry problems and OLA policies. Rep. Statist. Appl. Res. JUSE 25, 124128.Google Scholar
Stadje, W. (1985). On multiple stopping rules. Optimization 16, 401418.Google Scholar
Tamaki, M. (1979a). A secretary problem with double choices. J. Operat. Res. Soc. Japan 22, 257264.Google Scholar
Tamaki, M. (1979b). Recognizing both the maximum and the second maximum of a sequence. J. Appl. Prob. 16, 803812.Google Scholar