Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-16T17:27:10.971Z Has data issue: false hasContentIssue false

Results on the intersection of randomly located sets

Published online by Cambridge University Press:  14 July 2016

Franz Streit*
Affiliation:
University of Bern, Switzerland

Abstract

Randomly generated subsets of a point-set A 0 in the k-dimensional Euclidean space Rk are investigated. Under suitable restrictions the probability is determined that a randomly located set which hits A 0. is a subset of A 0 . Some results on the expected value of the measure and the surface area of the common intersection-set formed by n randomly located objects and A 0 are generalized and derived for arbitrary dimension k.

Information

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1975 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balanzat, M. (1942) Sur quelques formules de la géométrie intégrale des ensembles dans un espace à n dimensions. Portugaliae Math. 3, 8794.Google Scholar
Eggleston, H. G. (1963) Convexity. Cambridge University Press.Google Scholar
Germond, H. H. (1950) The circular coverage function. Rm-330, The Rand Corporation, Santa Monica, California.Google Scholar
Matheron, G. (1967) Eléments pour une Théorie des Milieux Poreux. Masson, Paris.Google Scholar
Morgenthaler, G. W. (1961) Some circular coverage problems. Biometrika 48, 313324.CrossRefGoogle Scholar
Rand Corporation (1952) Offset circle probabilities. R-234, The Rand Corporation, Santa Monica, California.Google Scholar
Streit, F. (1973) Mean-value formulae for a class of random sets. J. R. Statist. Soc. B 35, 437444.Google Scholar