Hostname: page-component-7857688df4-cdr9j Total loading time: 0 Render date: 2025-11-15T00:35:33.668Z Has data issue: false hasContentIssue false

Inhomogeneous random graphs with infinite-mean fitness variables

Published online by Cambridge University Press:  14 November 2025

Luca Avena*
Affiliation:
Leiden University and Università degli Studi di Firenze
Diego Garlaschelli*
Affiliation:
Lorentz Institute for Theoretical Physics, IMT School for Advanced Studies, INdAM-GNAMPA Istituto Nazionale di Alta Matematica
Rajat Subhra Hazra*
Affiliation:
Leiden University
Margherita Lalli*
Affiliation:
IMT School of Advanced Studies
*
*Postal address: Leiden University, Mathematical Institute, Niels Bohrweg 1 2333 CA, Leiden, The Netherlands.
***Postal address: Lorentz Institute for Theoretical Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands. INdAM-GNAMPA Istituto Nazionale di Alta Matematica, Italy. Email: garlaschelli@lorentz.leidenuniv.nl
*Postal address: Leiden University, Mathematical Institute, Niels Bohrweg 1 2333 CA, Leiden, The Netherlands.
****Postal address: IMT School for Advanced Studies, Piazza S. Francesco 19, 55100 Lucca, Italy.

Abstract

We consider an inhomogeneous Erdős–Rényi random graph ensemble with exponentially decaying random disconnection probabilities determined by an independent and identically distributed field of variables with heavy tails and infinite mean associated with the vertices of the graph. This model was recently investigated in the physics literature (Garuccio, Lalli, and Garlaschelli 2023) as a scale-invariant random graph within the context of network renormalization. From a mathematical perspective, the model fits in the class of scale-free inhomogeneous random graphs whose asymptotic geometrical features have recently attracted interest. While for this type of graph several results are known when the underlying vertex variables have finite mean and variance, here instead we consider the case of one-sided stable variables with necessarily infinite mean. To simplify our analysis, we assume that the variables are sampled from a Pareto distribution with parameter $\alpha\in(0,1)$. We start by characterizing the asymptotic distributions of the typical degrees and some related observables. In particular, we show that the degree of a vertex converges in distribution, after proper scaling, to a mixed Poisson law. We then show that correlations among degrees of different vertices are asymptotically non-vanishing, but at the same time a form of asymptotic tail independence is found when looking at the behavior of the joint Laplace transform around zero. Moreover, we present some findings concerning the asymptotic density of wedges and triangles, and show a cross-over for the existence of dust (i.e. disconnected vertices).

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anders Hedegaard Jessen, T. M. (2006). Regularly varying functions. Publ. Inst. Math. 80, 171192.10.2298/PIM0694171JCrossRefGoogle Scholar
Bender, C. M., Orszag, S. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, vol. 1. Springer, New York.10.1007/978-1-4757-3069-2CrossRefGoogle Scholar
Bhamidi, S., van der Hofstad, R. and Sen, S. (2018). The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs. Prob. Theory Relat. Fields 170, 387474.10.1007/s00440-017-0760-6CrossRefGoogle Scholar
Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. (2010). Scaling limits for critical inhomogeneous random graphs with finite third moments. Electron. J. Prob. 15, 16821702.10.1214/EJP.v15-817CrossRefGoogle Scholar
Bhattacharjee, C. and Schulte, M. (2022). Large degrees in scale-free inhomogeneous random graphs. Ann. Appl. Prob. 32, 696720.10.1214/21-AAP1693CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M., Teugels, J. L. and Teugels, J. (1989). Regular Variation. Cambridge University Press.Google Scholar
Boguna, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D. and Serrano, M. (2021). Network geometry. Nature Rev. Phys. 3, 114135.10.1038/s42254-020-00264-4CrossRefGoogle Scholar
Boguná, M. and Pastor-Satorras, R. (2003). Class of correlated random networks with hidden variables. Phys. Rev. E 68, 036112.10.1103/PhysRevE.68.036112CrossRefGoogle ScholarPubMed
Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122.10.1002/rsa.20168CrossRefGoogle Scholar
Caldarelli, G., Capocci, A., De Los Rios, P. and Munoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702.10.1103/PhysRevLett.89.258702CrossRefGoogle ScholarPubMed
Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected degrees. Proc. Nat. Acad. Sci. 99, 1587915882.10.1073/pnas.252631999CrossRefGoogle Scholar
Cipriani, A. and Salvi, M. (2021). Scale-free percolation mixing time. Preprint, arXiv:2111.05201.Google Scholar
Deijfen, M., van der Hofstad, R. and Hooghiemstra, G. (2013). Scale-free percolation. Ann. Inst. H. Poincaré Prob. Statist. 49, 817838.10.1214/12-AIHP480CrossRefGoogle Scholar
Deprez, P., Hazra, R. S. and Wüthrich, M. V. (2015). Inhomogeneous long-range percolation for real-life network modeling. Risks 3, 123.10.3390/risks3010001CrossRefGoogle Scholar
Devroye, L. and Fraiman, N. (2014). Connectivity of inhomogeneous random graphs. Random Structures Algorithms 45, 408420.10.1002/rsa.20490CrossRefGoogle Scholar
Gabrielli, A., Garlaschelli, D., Patil, S. P. and Serrano, M. Á. (2025). Network renormalization. Nature Rev. Phys. 7, 203219.10.1038/s42254-025-00817-5CrossRefGoogle Scholar
Garca-Pérez, G., Boguñá, M. and Serrano, M. (2018). Multiscale unfolding of real networks by geometric renormalization. Nature Phys. 14, 583589.10.1038/s41567-018-0072-5CrossRefGoogle Scholar
Garlaschelli, D., Capocci, A. and Caldarelli, G. (2007). Self-organized network evolution coupled to extremal dynamics. Nature Phys. 3, 813817.10.1038/nphys729CrossRefGoogle Scholar
Garuccio, E., Lalli, M. and Garlaschelli, D. (2023). Multiscale network renormalization: Scale-invariance without geometry. Phys. Rev. Res. 5, 043101.10.1103/PhysRevResearch.5.043101CrossRefGoogle Scholar
Gfeller, D. and De Los Rios, P. (2007). Spectral coarse graining of complex networks. Phys. Rev. Lett. 99, 038701.10.1103/PhysRevLett.99.038701CrossRefGoogle ScholarPubMed
Heydenreich, M., Hulshof, T. and Jorritsma, J. (2017). Structures in supercritical scale-free percolation. Ann. Appl. Prob. 27, 25692604.10.1214/16-AAP1270CrossRefGoogle Scholar
Kadanoff, L. P. (2000). Statistical Physics: Statics, Dynamics and Renormalization. World Scientific, Singapore.10.1142/4016CrossRefGoogle Scholar
Michielan, R., Litvak, N. and Stegehuis, C. (2022). Detecting hyperbolic geometry in networks: Why triangles are not enough. Phys. Rev. E 106, 054303.10.1103/PhysRevE.106.054303CrossRefGoogle ScholarPubMed
Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. Appl. Prob. 38, 5975.10.1239/aap/1143936140CrossRefGoogle Scholar
Radicchi, F., Barrat, A., Fortunato, S. and Ramasco, J. J. (2009). Renormalization flows in complex networks. Phys. Rev. E 79, 026104.10.1103/PhysRevE.79.026104CrossRefGoogle ScholarPubMed
Resnick, S. and Samorodnitsky, G. (2015). Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks. Extremes 18, 349367.10.1007/s10687-015-0216-2CrossRefGoogle Scholar
Rodgers, G. J., Austin, K., Kahng, B. and Kim, D. (2005). Eigenvalue spectra of complex networks. J. Phys. A 38, 9431.10.1088/0305-4470/38/43/003CrossRefGoogle Scholar
Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman & Hall, New York.Google Scholar
Song, C., Havlin, S. and Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nature Phys. 2, 275281.10.1038/nphys266CrossRefGoogle Scholar
van den Esker, H., van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005). Distances in random graphs with infinite mean degrees. Extremes 8, 111141.10.1007/s10687-006-7963-zCrossRefGoogle Scholar
van der Hofstad, R. (2013). Critical behavior in inhomogeneous random graphs. Random Structures Algorithms 42, 480508.10.1002/rsa.20450CrossRefGoogle Scholar
van der Hofstad, R. (2016). Random Graphs and Complex Networks, vol. 1 (Camb. Ser. Statist. Prob. Math. 43). Cambridge University Press.10.1017/9781316779422CrossRefGoogle Scholar
van der Hofstad, R. (2022). Random Graphs and Complex Networks, vol. 2. Available at: https://www.win.tue.nl/rhofstad/NotesRGCNII.pdf.Google Scholar
van der Hofstad, R., Janssen, A. J. E. M., van Leeuwaarden, J. S. H. and Stegehuis, C. (2017). Local clustering in scale-free networks with hidden variables. Phys. Rev. E 95, 022307.10.1103/PhysRevE.95.022307CrossRefGoogle ScholarPubMed
van der Hofstad, R. and Komjathy, J. (2017). Explosion and distances in scale-free percolation. Preprint, arXiv:1706.02597.Google Scholar
van der Hofstad, R. and Komjáthy, J. (2017). When is a scale-free graph ultra-small? J. Statist. Phys. 169, 223264.Google Scholar
van der Hofstad, R., Van der Hoorn, P., Litvak, N. and Stegehuis, C. (2020). Limit theorems for assortativity and clustering in null models for scale-free networks. Adv. Appl. Prob. 52, 10351084.10.1017/apr.2020.42CrossRefGoogle Scholar
Villegas, P., Gili, T., Caldarelli, G. and Gabrielli, A. (2023). Laplacian renormalization group for heterogeneous networks. Nature Phys. 19, 445450.10.1038/s41567-022-01866-8CrossRefGoogle Scholar
Wilson, K. G. (1983). The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583. 10.1103/RevModPhys.55.583CrossRefGoogle Scholar