Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T10:46:53.776Z Has data issue: false hasContentIssue false

Generalized Lorenz curves and convexifications of stochastic processes

Published online by Cambridge University Press:  14 July 2016

Youri Davydov*
Affiliation:
Université des Sciences et Technologies de Lille
Ričardas Zitikis*
Affiliation:
University of Western Ontario
*
Postal address: Université des Sciences et Technologies de Lille, Laboratoire de Statistique et Probabilités, 59655 Villeneuve d'Ascq Cedex, France.
∗∗Postal address: University of Western Ontario, Department of Statistical and Actuarial Sciences, London, Ontario N6A 5B7, Canada. Email address: zitikis@stats.uwo.ca

Abstract

We investigate convex rearrangements, called convexifications for brevity, of stochastic processes over fixed time intervals and develop the corresponding asymptotic theory when the time intervals indefinitely expand. In particular, we obtain strong and weak limit theorems for these convexifications when the processes are Gaussian with stationary increments and then illustrate the results using fractional Brownian motion. As a theoretical basis for these investigations, we extend some known, and also obtain new, results concerning the large sample asymptotic theory for the empirical generalized Lorenz curves and the Vervaat process when observations are stationary and either short-range or long-range dependent.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2003 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azaïs, J.-M., and Wschebor, M. (1996). Almost sure oscillation of certain random processes. Bernoulli 2, 257270.Google Scholar
Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.Google Scholar
Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1989). Regular Variation. Cambridge University Press.Google Scholar
Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G. (1982). Ergodic Theory. Springer, New York.Google Scholar
Csörgő, S., and Mielniczuk, J. (1996). The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Prob. Theory Relat. Fields 104, 1525.CrossRefGoogle Scholar
Csörgő, M., and Yu, H. (1999). Weak approximations for empirical Lorenz curves and their Goldie inverses of stationary observations. Adv. Appl. Prob. 31, 698719.Google Scholar
Csörgő, M., Csörgő, S. and Horváth, L. (1986). An Asymptotic Theory for Empirical Reliability and Concentration Processes. Springer, Berlin.CrossRefGoogle Scholar
Csörgő, M., Gastwirth, J. L., and Zitikis, R. (1998). Asymptotic confidence bands for the Lorenz and Bonferroni curves based on the empirical Lorenz curve. J. Statist. Planning Infer. 74, 6591.Google Scholar
Davydov, Y. (1998). Convex rearrangements of stable processes. J. Math. Sci. 92, 40104016.CrossRefGoogle Scholar
Davydov, Y. (2001). Remarks on estimation problem for stationary processes in continuous time. Statist. Infer. Stoch. Process. 4, 115.Google Scholar
Davydov, Y., and Thilly, E. (1999). Réarrangements convexes de processus stochastiques. C. R. Acad. Sci. Paris Sér. I Math. 329, 10871090.CrossRefGoogle Scholar
Davydov, Y., and Vershik, A. M. (1998). Réarrangements convexes des marches aléatoires. Ann. Inst. H. Poincaré Prob. Statist. 34, 7395.CrossRefGoogle Scholar
Davydov, Y., Khoshnevisan, D., Shi, Z., and Zitikis, R. (2003). Convex rearrangements, generalized Lorenz curves, and correlated Gaussian data. Prépublication PMA-825, Laboratoire de Probabilités, Université Paris.Google Scholar
Dehling, H., and Taqqu, M. S. (1989). The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Statist. 17, 17671783.Google Scholar
Dehling, H., Mikosch, T. and Sörensen, M. (eds) (2002). Empirical Process Techniques for Dependent Data. Birkhäuser, Boston, MA.Google Scholar
Doukhan, P., Oppenheim, G., and Taqqu, M. S. (eds) (2003). Theory and Applications of Long-Range Dependence. Birkhäuser, Boston, MA.Google Scholar
Goldie, C. M. (1977). Convergence theorems for empirical Lorenz curves and their inverses. Adv. Appl. Prob. 9, 765791.Google Scholar
Ibragimov, I. A. and Linnik, Yu. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.Google Scholar
Philippe, A., and Thilly, E. (2002). Identification of a locally self-similar Gaussian process by using convex rearrangements. Methodology Comput. Appl. Prob. 4, 195209.CrossRefGoogle Scholar
Pitt, L. D. (1982). Positively correlated normal variables are associated. Ann. Prob. 10, 496499.Google Scholar
Shao, Q.-M., and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences. Ann. Prob. 24, 20982127.Google Scholar
Shorack, G. R., and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. John Wiley, New York.Google Scholar
Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitsth. 31, 287302.Google Scholar
Taqqu, M. S. (1977). Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitsth. 40, 203238.Google Scholar
Thilly, E. (1999). Réarrangements Convexes des Trajectoires de Processus Stochastiques. Doctoral Thesis, Université des Sciences et Technologies de Lille.Google Scholar
Yu, H. (1993). A Glivenko—Cantelli lemma and weak convergence for empirical processes of associated sequences. Prob. Theory Relat. Fields 95, 357370.CrossRefGoogle Scholar
Zitikis, R. (1998). The Vervaat process. In Asymptotic Methods in Probability and Statistics, ed. Szyszkowicz, B., North-Holland, Amsterdam, pp. 667694.Google Scholar