Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:54:43.407Z Has data issue: false hasContentIssue false

Decorrelation of a class of Gibbs particle processes and asymptotic properties of U-statistics

Published online by Cambridge University Press:  04 September 2020

Viktor Beneš*
Affiliation:
Charles University in Prague
Christoph Hofer-Temmel*
Affiliation:
CWI & Dutch Defense Academy
Günter Last*
Affiliation:
Karlsruhe Institute of Technology
Jakub Večeřa*
Affiliation:
Charles University in Prague
*
*Postal address: Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 18675 Praha 8, Czech Republic.
***Postal address: CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands. Email address: math@temmel.me
****Postal address: Department of Mathematics, Karlsruhe Institute of Technology, Postfach 6980, D-76049 Karlsruhe, Germany. Email address: guenter.last@kit.edu
*Postal address: Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 18675 Praha 8, Czech Republic.

Abstract

We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation, we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a U-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such U-statistics of the Gibbs particle process. A by-product of our approach is a new uniqueness result for Gibbs particle processes.

Type
Research Papers
Copyright
© Applied Probability Trust 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blaszczyszyn, B., Merzbach, E. andSchmidt, V. (1997). A note on expansion for functionals of spatial marked point processes. Statist. Prob. Lett. 36 (3), 299306.CrossRefGoogle Scholar
Blaszczyszyn, B., Yogeshwaran, D. andYukich, J. E. (2019). Limit theory for geometric statistics of point processes having fast decay of correlations. Ann. Prob. 47 (2), 835895.CrossRefGoogle Scholar
Chiu, S. N., Stoyan, D., Kendall, W. S. andMecke, J. (2013). Stochastic Geometry and its Applications, 3rd edn. Wiley, Chichester.CrossRefGoogle Scholar
Coeurjolly, J.-F., Møller, J. andWaagepetersen, R. (2017). A tutorial on Palm distributions for spatial point processes. Internat. Statist. Rev. 83 (5), 404420.CrossRefGoogle Scholar
Daley, D. J. andVere-Jones, D. (2003/2008). An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods, Vol. II: General Theory and Structure, 2nd edn. Springer, New York.Google Scholar
Dereudre, D., Drouilhet, R. andGeorgii, H.-O. (2012). Existence of Gibbsian point processes with geometry-dependent interactions. Prob. Theory Relat. Fields 153, 643670.CrossRefGoogle Scholar
Dudley, R. M. (1989). Real Analysis and Probability (Wadsworth & Brooks/Cole Mathematics Series). Wadsworth & Brooks/Cole Advanced Books & Software.Google Scholar
Ferrari, P. A., Fernández, R. andGarcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and Ising models. Stoch. Process. Appl. 102, 6388.CrossRefGoogle Scholar
Flimmel, D. andBeneš, V. (2018). Gaussian approximation for functionals of Gibbs particle processes. Kybernetika 54 (4), 765777.Google Scholar
Georgii, H.-O. andKüneth, T. (1997). Stochastic order of point processes. J. Appl. Prob. 34 (4), 868881.CrossRefGoogle Scholar
Georgii, H.-O. andYoo, H. J. (2005). Conditional intensity and Gibbsianness of determinantal point processes. J. Statist. Phys. 118, 55–84.10.1007/s10955-004-8777-5CrossRefGoogle Scholar
Gouéré, J. B. (2008). Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Prob. 36 (4), 12091220.CrossRefGoogle Scholar
Hofer-Temmel, C. andHoudebert, P. (2019). Disagreement percolation for Gibbs ball models. Stoch. Process. Appl. 129 (10), 39223940.CrossRefGoogle Scholar
Jansen, S. (2019). Cluster expansions for Gibbs point processes. Adv. Appl. Prob. 51 (4), 11291178.CrossRefGoogle Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer, Cham.CrossRefGoogle Scholar
Last, G. (2014). Perturbation analysis of Poisson processes. Bernoulli 20, 486513.CrossRefGoogle Scholar
Last, G. andPenrose, M. (2017). Lectures on the Poisson Process. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Mase, S. (2000). Marked Gibbs processes and asymptotic normality of maximum pseudolikelihood estimators. Math. Nachr. 209, 151169.3.0.CO;2-J>CrossRefGoogle Scholar
Matthes, K., Warmuth, W. andMecke, J. (1979). Bemerkungen zu einer Arbeit von Nguyen Xuan Xanh und Hans Zessin. Math. Nachr. 88, 117127.CrossRefGoogle Scholar
Meester, R. andRoy, R. (1996). Continuum Percolation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Penrose, M. (1996). Continuum percolation and Euclidean minimal spanning trees in high dimensions Ann. Appl. Prob. 6, 528544.CrossRefGoogle Scholar
Reitzner, M. andSchulte, M. (2013). Central limit theorems for U-statistics of Poisson point processes, Ann. Prob. 41, 38793909.CrossRefGoogle Scholar
Ruelle, D. (1970). Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127159.CrossRefGoogle Scholar
Schneider, R. andWeil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.CrossRefGoogle Scholar
Schreiber, T. andYukich, J. E. (2013). Limit theorems for geometric functionals of Gibbs point processes. Ann. Inst. H. Poincaré Prob. Statist. 49, 11581182.CrossRefGoogle Scholar
Torrisi, G. L. (2017). Probability approximation of point processes with Papangelou conditional intensity. Bernoulli 23, 22102256.CrossRefGoogle Scholar
Večeřa, J. andBeneš, V. (2016). Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity. Methodology Comput. Appl. Prob. 18 (4), 12171239.CrossRefGoogle Scholar
Večeřa, J. andBeneš, V. (2017). Approaches to asymptotics for U-statistics of Gibbs facet processes. Statist. Prob. Lett. 122, 5157.CrossRefGoogle Scholar
Xia, A. andYukich, J. E. (2015). Normal approximation for statistics of Gibbsian input in geometric probability. Adv. Appl. Prob. 25, 934972.CrossRefGoogle Scholar
Ziesche, S. (2018). Sharpness of the phase transition and lower bounds for the critical intensity in continuum percolation on $\mathbb{R}^d$ . Ann. Inst. H. Poincaré Prob. Statist. 54, 866878.CrossRefGoogle Scholar