Published online by Cambridge University Press: 15 May 2008
Sensitivity analysis is routinely carried out in the evaluation of simulation models to identify the degree to which parameters influence model outputs. This type of sensitivity analysis is much less frequently applied to real systems, but a technique called metabolic control analysis (MCA) was developed in the 1970s for the purpose of experimentally identifying the degree to which individual enzymes in a metabolic pathway influence flux through the pathway. MCA is applied to the results of inhibition, activation or genetic manipulation of enzymatic steps in a biochemical pathway. Flux control coefficients for each enzyme are defined as the fractional change in steady-state flux through the entire pathway for an infinitesimal change in the activity of that one enzyme. The sum of control coefficients in a linear, non-branching pathway is equal to one. It is a common finding in MCA that the control, or sensitivity, is distributed over multiple enzymes and not in a single rate-limiting enzyme. The fundamental principles of MCA are reviewed and an overview of experimental methods to measure control coefficients is provided, with the objective of introducing this approach to the fields of agricultural biochemistry and modelling, where it is little known. The application of MCA to the study of glucose metabolism and fatty acid synthesis in bovine mammary tissue are reviewed. The analyses indicated that mammary hexokinase activity exerts more control than transmembrane transport of glucose over lactose synthesis, and that control of cytosolic fatty acid synthesis is shared between acetyl-CoA carboxylase and fatty acid synthase, contrary to the widely held view that acetyl CoA carboxylase is the rate-limiting enzyme. It is suggested that MCA could be a valuable aid in the integration of proteomic and metabolomic data with metabolic flux measurements to engineer desired changes in the composition of milk from dairy animals.