Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T22:42:10.007Z Has data issue: false hasContentIssue false

Use of metabolic control analysis in lactation biology

Published online by Cambridge University Press:  15 May 2008

T. C. WRIGHT*
Affiliation:
Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
J. P. CANT
Affiliation:
Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
B. W. MCBRIDE
Affiliation:
Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*
*To whom all correspondence should be addressed. Email: tcwright@uoguelph.ca

Summary

Sensitivity analysis is routinely carried out in the evaluation of simulation models to identify the degree to which parameters influence model outputs. This type of sensitivity analysis is much less frequently applied to real systems, but a technique called metabolic control analysis (MCA) was developed in the 1970s for the purpose of experimentally identifying the degree to which individual enzymes in a metabolic pathway influence flux through the pathway. MCA is applied to the results of inhibition, activation or genetic manipulation of enzymatic steps in a biochemical pathway. Flux control coefficients for each enzyme are defined as the fractional change in steady-state flux through the entire pathway for an infinitesimal change in the activity of that one enzyme. The sum of control coefficients in a linear, non-branching pathway is equal to one. It is a common finding in MCA that the control, or sensitivity, is distributed over multiple enzymes and not in a single rate-limiting enzyme. The fundamental principles of MCA are reviewed and an overview of experimental methods to measure control coefficients is provided, with the objective of introducing this approach to the fields of agricultural biochemistry and modelling, where it is little known. The application of MCA to the study of glucose metabolism and fatty acid synthesis in bovine mammary tissue are reviewed. The analyses indicated that mammary hexokinase activity exerts more control than transmembrane transport of glucose over lactose synthesis, and that control of cytosolic fatty acid synthesis is shared between acetyl-CoA carboxylase and fatty acid synthase, contrary to the widely held view that acetyl CoA carboxylase is the rate-limiting enzyme. It is suggested that MCA could be a valuable aid in the integration of proteomic and metabolomic data with metabolic flux measurements to engineer desired changes in the composition of milk from dairy animals.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, R. L. (1996). Modeling Ruminant Digestion and Metabolism. London, UK: Chapman & Hall.Google Scholar
Barber, M. C., Price, N. T. & Travers, M. T. (2005). Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et Biophysica Acta 1733, 128.CrossRefGoogle ScholarPubMed
Baumgard, L. H., Matitashvilli, E., Corl, B. A., Dwyer, D. A. & Bauman, D. E. (2002). Trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. Journal of Dairy Science 85, 21552163.CrossRefGoogle ScholarPubMed
Boland, M., MacGibbon, A. & Hill, J. (2001). Designer milks for the new millennium. Livestock Production Science 72, 99109.Google Scholar
Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. & Lee, W. M. (2006). Regulation of acetyl-CoA carboxylase. Biochemical Society Transactions 34, 223227.Google Scholar
Davies, S. E. C. & Brindle, K. M. (1992). Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 31, 47294735.Google Scholar
Davis, M. S., Solbiati, J. & Cronan, J. E. Jr (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. Journal of Biological Chemistry 275, 2859328598.CrossRefGoogle ScholarPubMed
Duggleby, R. G., Attwood, P. V., Wallace, J. C. & Keech, D. B. (1982). Avidin is a slow-binding inhibitor of pyruvate carboxylase. Biochemistry 21, 33643370.CrossRefGoogle ScholarPubMed
Fell, D. A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochemical Journal 286, 313330.CrossRefGoogle ScholarPubMed
Fell, D. A. (1997). Understanding the control of metabolism. London: Portland Press Ltd.Google Scholar
Fisher, J. S., Nolte, L. A., Kawanaka, K., Han, D.-H., Jones, T. E. & Holloszy, J. O. (2002). Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation. American Journal of Physiology 282, E1214E1221.Google Scholar
France, J. & Thornley, J. H. M. (1984). Mathematical Models in Agriculture. London, UK: Butterworths.Google Scholar
Fueger, P. T., Li, C. Y., Ayala, J. E., Shearer, J., Bracy, D. P., Charron, M. J., Rottman, J. N. & Wasserman, D. H. (2007). Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. Journal of Physiology 582, 801812.Google Scholar
Grummer, R. (1991). Effect of feed on the composition of milk fat. Journal of Dairy Science 74, 32443257.Google Scholar
Harper, M. E. & Brand, M. D. (1995). Use of top-down elasticity analysis to identify sites of thyroid hormone-induced thermogenesis. Proceedings of the Society for Experimental Biology and Medicine 208, 228237.Google Scholar
Heid, H. W. & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology 84, 245258.Google Scholar
Heinrich, R. & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains – general properties, control and effector strengths. European Journal of Biochemistry 42, 8995.Google Scholar
Jucker, B. M., Barucci, N. & Shulman, G. I. (1999). Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle. American Journal of Physiology – Endocrinology and Metabolism 277, E505E512.CrossRefGoogle ScholarPubMed
Kacser, H. & Burns, J. A. (1973). The control of flux. Symposia of the Society for Experimental Biology 28, 65104.Google Scholar
Kahn, B. B. (1992). Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. Journal of Clinical Investigation 89, 13671374.Google Scholar
Kashiwaya, Y., Sato, K., Tsuchiya, N., Thomas, S., Fell, D. A., Veech, R. L. & Passonneau, J. V. (1994). Control of glucose utilization in working perfused rat heart. Journal of Biological Chemistry 269, 2550225514.CrossRefGoogle ScholarPubMed
Kemp, R. G. & Markus, F. (1990). Effects of fructose-2,6-bisphosphate on 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. In Fructose-2,6-Bisphosphate (Ed. Pilkis, S. J.), pp. 1737. Boca Raton, FL: CRC Press.Google Scholar
Meléndez-Hevia, E., Mateo, F. & Torres, N. V. (1992). Control analysis of rat liver glycolysis under different glucose concentrations. The substrate approach and the role of glucokinase. Molecular and Cellular Biochemistry 115, 19.CrossRefGoogle ScholarPubMed
Molenaar, A., Mao, J., Oden, K. & Seyfert, H. M. (2003). All three promoters of the acetyl-coenzyme A-carboxylase ALPA-encoding gene are expressed in mammary epithelial cells of ruminants. Journal of Histochemistry and Cytochemistry 51, 10731081.Google Scholar
Munday, M. R. (2002). Regulation of mammalian acetyl-CoA carboxylase. Biochemical Society Transactions 30, 10591064.Google Scholar
Niederberger, P., Prasad, R., Miozzari, G. & Kacser, H. (1992). A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochemical Journal 287, 473479.Google Scholar
Page, R. A., Okada, S. & Harwood, J. L. (1994). Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochimica et Biophysica Acta 1210, 369372.CrossRefGoogle ScholarPubMed
Peterson, D. G., Matitashvili, E. A. & Bauman, D. E. (2003). Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. Journal of Nutrition 133, 30983102.CrossRefGoogle ScholarPubMed
Playne, M. J., Bennett, L. E. & Smithers, G. W. (2003). Functional dairy foods and ingredients. Australian Journal of Dairy Technology 58, 242264.Google Scholar
Quant, P. A. (1993). Experimental application of top-down control analysis to metabolic systems. Trends in Biochemical Science 18, 2630.Google Scholar
Ren, J. M., Marshall, B. A., Gulve, E. A., Gao, J., Johnson, D. W., Holloszy, J. O. & Mueckler, M. (1993). Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. Journal of Biological Chemistry 268, 1611316115.CrossRefGoogle ScholarPubMed
Robin, E. D., Murphy, B. J. & Theodore, J. (1984). Coordinate regulation of glycolysis by hypoxia in mammalian cells. Journal of Cellular Physiology 118, 287290.Google Scholar
Salomonis, N., Hanspers, K., Zambon, A. C., Vranizan, K., Lawlor, S. C., Dahlquist, K. D., Doniger, S. W., Stuart, J., Conklin, B. R. & Pico, A. R. (2007). GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8, 217.Google Scholar
Sul, H. S. & Wang, D. (1998). Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annual Review of Nutrition 18, 331351.CrossRefGoogle ScholarPubMed
Thomas, S., Mooney, P. J. F., Burrell, M. M. & Fell, D. A. (1997). Metabolic control analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): Explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochemical Journal 322, 119127.Google Scholar
Threadgold, L. C., Coore, H. G. & Kuhn, N. J. (1982). Monosaccharide transport into lactating-rat mammary acini. Biochemical Journal 204, 493501.CrossRefGoogle ScholarPubMed
Ward, R. E. & German, J. B. (2004). Understanding milk's bioactive components: a goal for the genomics toolbox. Journal of Nutrition 134, 962S967S.CrossRefGoogle ScholarPubMed
Whitesell, R. R., Ardehali, H., Printz, R. L., Beechem, J. M., Knobel, S. M., Piston, D. W., Granner, D. K., Van Der Meer, W., Perriott, L. M. & May, J. M. (2003). Control of glucose phosphorylation in L6 myotubes by compartmentalization, hexokinase, and glucose transport. Biochemical Journal 370, 4756.Google Scholar
Wilde, C. J. & Kuhn, N. J. (1981). Lactose synthesis and the utilization of glucose by rat mammary acini. International Journal of Biochemistry 13, 311316.Google Scholar
Wright, T. C., Cant, J. P., Brenna, J. T. & McBride, B. W. (2006). Acetyl CoA carboxylase shares control of fatty acid synthesis with fatty acid synthase in bovine mammary homogenate. Journal of Dairy Science 89, 25522558.CrossRefGoogle ScholarPubMed
Xiao, C. T. & Cant, J. P. (2005). Relationship between glucose transport and metabolism in isolated bovine mammary epithelial cells. Journal of Dairy Science 88, 27942805.CrossRefGoogle ScholarPubMed