Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T02:48:05.807Z Has data issue: false hasContentIssue false

Studies on soil humic acids II: Observations on the estimation of free amino groups. Reactions of humic acid and lignin preparations with nitrous acid

Published online by Cambridge University Press:  27 March 2009

J. M. Bremner
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts

Extract

1. Free amino groups in humic acid preparations isolated from 0·5M-sodium hydroxide and 0·1M-sodium pyrophosphate (pH 7·0) extracts of various soils have been estimated by the nitrous acid method of Van Slyke (1929) and the fluorodinitrobenzene technique of Sanger (1945).

2. The results obtained by the Van Slyke method using a reaction time of 15min. indicated that from 12 to 30% of the total nitrogen in the preparations examined was in the form of free amino groups. No free amino groups could be detected by the fluorodinitrobenzene technique.

3. It is shown that lignin interferes with the estimation of amino groups by the Van Slyke method, and it is suggested that lignin or ligninderived material may be largely responsible for the high apparent amino-nitrogen values obtained with humic acid preparations by this method.

4. The reaction of humic acid with nitrous acid resembles the reaction of lignin with nitrous acid in that it is accompanied by the fixation of nitrogen and the destruction of methoxyl groups. The reaction of lignin with nitrous acid is similar in many respects to its reaction with nitric acid.

5. Only about one-third of the nitrogen fixed by lignin in its reaction with nitrous acid is removed by prolonged hydrolysis with 6N-HC1, and most of the nitrogen so released is in the form of ammonia. A small amount of the nitrogen liberated by acid hydrolysis is in the form of hydroxylamine.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, F. E. & Doetsch, J. (1951). Proc. Soil Sci. Soc. Amer. 15, 163.CrossRefGoogle Scholar
Allison, F. E., Doetsch, J. H. & Sterling, L. D. (1952). Soil Sci. 74, 311.CrossRefGoogle Scholar
Biserte, G. & Osteux, R. (1951). Bull. Soc. Chim. biol., Paris, 33, 50.Google Scholar
Blackburn, S. (1949). Biochem. J. 45, 579.CrossRefGoogle Scholar
Blackburn, S. & Lowther, A. G. (1951). Biochem. J. 48, 126.CrossRefGoogle Scholar
Bondi, A. & Meyer, H. (1948). Biochem. J. 43, 248.CrossRefGoogle Scholar
Bowes, J. H. & Moss, J. A. (1953). Biochem. J. 55, 735.CrossRefGoogle Scholar
Brauns, F. E. (1939). J. Amer. Chem. Soc. 61, 2120.CrossRefGoogle Scholar
Brauns, F. E. (1952). The Chemistry of Lignin. New York: Academic Press.Google Scholar
Bremner, J. M. (1952). J. Sci. Fd Agric. 3, 497.CrossRefGoogle Scholar
Bremner, J. M. (1954 a). J. Soil Sci. 5, 214.CrossRefGoogle Scholar
Bremner, J. M. (1954 b). Analyst, 79, 198.CrossRefGoogle Scholar
Bremner, J. M. (1955 a). J. Agric. Sci. 46, 247.CrossRefGoogle Scholar
Bremner, J. M. (1955 b). Z. PflErnähr. Düng. 69, 32.CrossRefGoogle Scholar
Bremner, J. M. (1956). Soils & Fert. 19, 115.Google Scholar
Bremner, J. M. & Shaw, K. (1955). J. Agric. Sci. 46, 320.CrossRefGoogle Scholar
Carter, H. E. & Dickman, S. R. (1943). J. Biol. Chem. 148, 453.Google Scholar
Clarke, H. T. & Inouye, J. M. (1930). J. Biol. Chem. 89, 399.CrossRefGoogle Scholar
Crampton, E. W. & Maynard, W. A. (1938). J. Nutr. 15, 383.CrossRefGoogle Scholar
Csaky, T. Z. (1948). Acta chem. scand. 2, 450.CrossRefGoogle Scholar
Folch, J., Schneider, H. A. & van Slyke, D. D. (1940). J. Biol. Chem. 133, xxxiii.Google Scholar
Fraenkel-Conrat, H. (1943). J. Biol. Chem. 148, 453.CrossRefGoogle Scholar
Fuchs, W. (1928). BrennstChemie, 9, 178.Google Scholar
Fuchs, W. (1935). ZellstFaser, 32, 86.Google Scholar
Hulme, A. C. (1935). Biochem. J. 29, 263.CrossRefGoogle Scholar
Lancaster, R. L. (1943). N.Z. J. Sci. Tech. 25A, 137.Google Scholar
Lea, C. H. & Rhodes, D. N. (1954). Biochem. J. 56, 613.CrossRefGoogle Scholar
Lough, S. A. & Lewis, H. B. (1934). J. Biol. Chem. 104, 601.CrossRefGoogle Scholar
Norman, A. G. & Jenkins, S. H. (1934 a). Biochem. J. 28, 2147.CrossRefGoogle Scholar
Norman, A. G. & Jenkins, S. H. (1934 b). Biochem. J. 28, 2160.CrossRefGoogle Scholar
Okuda, A. & Hori, S. (1954). Trans. Fifth Int. Congr. Soil Sci. 2, 255.Google Scholar
Peters, J. P. & van Slyke, D. D. (1932). Quantitative Clinical Chemistry, 2. London: Baillière, Tindall and Cox.Google Scholar
Porter, R. R. (1948). Biochim. biophys. Acta, 2, 105.CrossRefGoogle Scholar
Porter, R. R. & Sanger, F. (1948). Biochem. J. 42, 287.CrossRefGoogle Scholar
Rahn, H. (1932). Planta, 18, 1.CrossRefGoogle Scholar
Rosenblatt, D. H., Epstein, J. & Levitch, M. (1953). J. Amer. Chem. Soc. 75, 3277.CrossRefGoogle Scholar
Salo, T. P. (1950). J. Amer. Leath. Chem. Ass. 45, 99.Google Scholar
Sanger, F. (1945). Biochem. J. 39, 507.CrossRefGoogle Scholar
Sarkar, P. B. (1934). J. Indian Chem. Soc. 11, 407.Google Scholar
Schenck, M. (1950). Hoppe-Seyl. Z. 286, 270.CrossRefGoogle Scholar
Sowden, F. J. & Parker, D. I. (1953). Soil Sci. 76, 201.CrossRefGoogle Scholar
Stone, J. E. & Blundell, M. J. (1951). Analyt. Chem. 23, 771.CrossRefGoogle Scholar
Stuart, N. W. (1935). Plant Physiol. 10, 135.CrossRefGoogle Scholar
Taylor, T. W. J. & Baker, W. (1937). Sidgwick's Organic Chemistry of Nitrogen, 2nd ed. p. 172. Oxford: Clarendon Press.Google Scholar
van Slyke, D. D. (1911). J. Biol. Chem. 9, 185.CrossRefGoogle Scholar
van SlykE, D. D. (1912). J. Biol. Chem. 12, 275.CrossRefGoogle Scholar
van Slyke, D. D. (1929). J. Biol. Chem. 83, 425.CrossRefGoogle Scholar
Waksman, S. A. & Iyer, K. R. N. (1932). Soil Sci. 34, 43.CrossRefGoogle Scholar