Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T08:58:44.176Z Has data issue: false hasContentIssue false

Seasonal changes in leaf water potential components in two almond cultivars

Published online by Cambridge University Press:  27 March 2009

M. C. Ruíz-Sánchez
Affiliation:
UEI Riego Localizado, Centro de Edafologia y Biología Aplkada del Segura (CSIQ), PO Box 4195, E–30080 Murcia, Spain
M. J. Sánchez-Blanco
Affiliation:
UEI Riego Localizado, Centro de Edafologia y Biología Aplkada del Segura (CSIQ), PO Box 4195, E–30080 Murcia, Spain
J. Planes
Affiliation:
UEI Riego Localizado, Centro de Edafologia y Biología Aplkada del Segura (CSIQ), PO Box 4195, E–30080 Murcia, Spain
J. J. Alarcón
Affiliation:
UEI Riego Localizado, Centro de Edafologia y Biología Aplkada del Segura (CSIQ), PO Box 4195, E–30080 Murcia, Spain
A. Torrecillas
Affiliation:
UEI Riego Localizado, Centro de Edafologia y Biología Aplkada del Segura (CSIQ), PO Box 4195, E–30080 Murcia, Spain

Summary

Almond trees (Amygdalus communis L. cvs Garrigues and Ramillete) were grown in the field under non-irrigated conditions in Murcia, Spain. Seasonal variations in leaf water potential components were studied in 1989. Predawn leaf water potential showed high values in both cultivars, due to the absence of soil water stress. Pressure-volume curve analysis indicated that the leaf osmotic potential at full saturation (Ψo(sat)) for cv. Garrigues remained fairly constant throughout the season. Bulk modulus of elasticity (E) showed, in both cultivars, a tendency to decrease as the season progressed. E values were higher in Ramillete than in Garrigues. The relative water content at the turgor loss point (RWCtlp) seemed to be controlled by E values. The larger relative apoplastic water content (RWCa found in Ramillete might have allowed it to retain more water at low leaf water potentials than Garrigues. These facts would support the suggestion that Ramillete is a more drought-resistant cultivar than Garrigues.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd El-Rahman, A. A., Shalaby, A. F. & Baleg, M. S. (1966). Water relations of almond under desert conditions. Bulletin of the Faculty of Science of Cairo University 40, 1328.Google Scholar
Castel, J. R. & Fereres, E. (1982). Response of young almond trees to two drought periods in the field. Journal of Horticultural Science 57, 175187.CrossRefGoogle Scholar
Cheung, Y. N. S., Tyree, M. T. & Dainty, J. (1976). Some possible sources of error in determining bulk elastic moduli and other parameters from pressure-volume curves of shoots and leaves. Canadian Journal of Botany 54, 758765.CrossRefGoogle Scholar
Colombo, S. J. (1987). Changes in osmotic potential, cell elasticity, and turgor relationships of 2nd year black spruce container seedlings. Canadian Journal of Forest Research 17, 365369.CrossRefGoogle Scholar
Cutler, J. M., Rains, D. W. & Loomis, R. S. (1977). The importance of cell size in the water relations of plants. Physiologia Plantarum 40, 255260.CrossRefGoogle Scholar
Davis, S. D. & Mooney, H. A. (1986). Tissue water relations of four co-occurring chaparral shrubs. Oecologia 70, 527535.CrossRefGoogle ScholarPubMed
Fereres, E., Cruz-Romero, G., Hoffman, G. J. & Rawlins, S. L. (1979). Recovery of orange trees following severe water stress. Journal of Applied Ecology 16, 833842.CrossRefGoogle Scholar
Fereres, E., Aldrich, T. M., Schulbach, H. & Martinich, D. A. (1981). Responses of young almond trees to lateseason drought. California Agriculture 35 (7 & 8), 1112.Google Scholar
Hellkvist, J., Richards, G. P. & Jarvis, P. G. (1974). Vertical gradients of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber. Journal of Applied Ecology 11, 637667.CrossRefGoogle Scholar
Hlnckley, T. M., Duhme, F., Hlnckley, A. R. & Rlchter, H. (1980). Water relations of drought hardy shrubs: osmotic potential and stomatal reactivity. Plant, Cell and Environment 3, 131140.CrossRefGoogle Scholar
Karlic, H. & Richter, H. (1983). Developmental effects on leaf water relations of two evergreen shrubs (Prunus laurocerasush. and Ilex aquifolium L.). Flora 173, 143150.CrossRefGoogle Scholar
Levitt, J. (1972). Responses of plants to environmental stresses. In Physiological Ecology (Ed. Kozlowski, T. T.), pp. 322329. New York: Academic Press.Google Scholar
Nunes, M. A., Catarino, F. & Pinto, E. (1989). Strategies for acclimation to seasonal drought in Ceratonia siliqua leaves. Physiologia Plantarum 77, 150156.CrossRefGoogle Scholar
Rieger, M. & Daniell, J. W. (1988). Leaf water relations, soil-to-leaf resistance, and drought stress in pecan seedlings. Journal of the American Society for Horticultural Science 113, 789793.CrossRefGoogle Scholar
Rudich, J., Rendon-Poblete, E., Stevens, M. A. & Ambri, A. I. (1981). Use of leaf water potential to determine water stress in field-grown tomato plants. Journal of the American Society for Horticultural Science 106, 732736.CrossRefGoogle Scholar
Sánchez-Blanco, M. J., Ruíz-Sánchez, M. C., Planes, J. & Torrecillas, A. (1991). Water relations of two almond cultivars under anomalous rainfall in non-irrigated culture. Journal of Horticultural Science 66, 403408.CrossRefGoogle Scholar
Scholander, P. F., Hammel, H. T., Bradstreet, E. D. & Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science 148, 339346.CrossRefGoogle ScholarPubMed
Torrecillas, A., Ruiz-Sánchez, M. C., Del Amor, F. & Leon, A. (1988). Seasonal variations on water relations of Amygdalus communis L. under drip irrigated and non irrigated conditions. Plant and Soil 106, 215220.CrossRefGoogle Scholar
Turner, N. C. (1986). Crop water deficits: a decade of progress. Advances in Agronomy 39, 151.CrossRefGoogle Scholar
Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science 9, 289308.CrossRefGoogle Scholar
Tyree, M. T. & Hammel, H. T. (1972). The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. Journal of Experimental Botany 23, 267282.CrossRefGoogle Scholar
Tyree, M. T. & Jarvis, P. G. (1982). Water in tissues and cells. In Encyclopedia of Plant Physiology, New Series, Vol. 12B (Eds Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H.), pp. 3577. Berlin: Springer Verlag.Google Scholar
Tyree, M. T. & Richter, H. (1981). Alternative methods of analysing water potential isotherms: some cautions and clarifications. I. The impact of non-ideality and of some experimental errors. Journal of Experimental Botany 32, 643653.CrossRefGoogle Scholar
Tyree, M. T. & Richter, H. (1982). Alternate methods of analysing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Canadian Journal of Botany 60, 911916.CrossRefGoogle Scholar
Tyree, M. T., Cheung, Y. N. S., MacGregor, M. E. & Talbot, A. J. B. (1978). The characteristics of seasonal and ontogenetic changes in the tissue-water relations of Acer, Populus, Tsuga, and Picea. Canadian Journal of Botany 56, 635647.CrossRefGoogle Scholar
Wilson, J. R., Fisher, M. J., Shulze, E. D., Dalby, G. R. & Ludlow, M. M. (1979). Comparison between pressurevolume and dewpoint-hygrometry techniques for determining the water relations characteristics of grass and legume leaves. Oecologia 41, 7788.CrossRefGoogle ScholarPubMed
Yoon, T. M. & Richter, H. (1990). Seasonal changes in stomatal responses of sweet cherry and plum to water status in detached leaves. Physiologia Plantarum 80, 520526.CrossRefGoogle Scholar