Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:57:09.296Z Has data issue: false hasContentIssue false

Relationships of grain carbon isotope discrimination (Δ) and ash content with yield and quality in dry bean

Published online by Cambridge University Press:  08 November 2010

J. T. TSIALTAS*
Affiliation:
National Agricultural Research Foundation, Cotton and Industrial Plants Institute, 574 00 Sindos, Greece
I. I. PAPADOPOULOS
Affiliation:
Technological Education Institute of Western Macedonia, Branch of Florina, 531 00 Florina, Greece
E. G. TAMOUTSIDIS
Affiliation:
Technological Education Institute of Western Macedonia, Branch of Florina, 531 00 Florina, Greece
I. S. TOKATLIDIS
Affiliation:
Department of Agricultural Development, Democritus University of Thrace, Pantazidou 193, 682 00 Orestiada, Greece
*
*To whom all correspondence should be addressed. Email: tsialtas01@windowslive.com

Summary

Dry bean (Phaseolus vulgaris L.) is a traditional crop of north-western Macedonia, Greece, where two landraces (plaki Prespas and Chrisoupoli) in particular are grown. The aim of this study was to test whether the grain carbon isotope discrimination (Δ) and ash content (ASH) are related to grain yield (GY), protein content (PC) and mean grain weight (MGW) in dry bean. As a part of a honeycomb selection programme, 21 genotypes (19 lines derived via intra-landrace honeycomb selection for single plant yield at low density plus the two original populations) were grown at two densities, 1·2 and 4·8 plants/m2 under non-limiting water conditions in a glasshouse and in the field. Genotypes differed significantly for Δ, ASH and PC under the low density. In the dense stand, genotypes differed significantly only for ASH and PC. The environment (glasshouse or field conditions) affected all the traits significantly. Neither Δ nor ASH showed strong or consistent relationships with GY and thus, they cannot serve as reliable, indirect selection criteria for GY. Strong, negative relationships between Δ and PC were found especially in the dense stand, confirming analogous results in C3 cereals. Inconsistent genotypic ranking for grain physiological traits under the different densities and environments was indicative of large genotype×environment interaction. Genotypes performed consistently for GY and MGW under both densities, showing the strong stability of these traits.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acosta-Gallegos, J. A., Kelly, J. D. & Gepts, P. (2007). Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Science 47(S3), S44S59.CrossRefGoogle Scholar
Araus, J. L., Amaro, T., Casadesús, J., Asbati, A. & Nachit, M. M. (1998). Relationships between ash content, carbon isotope discrimination and yield in durum wheat. Australian Journal of Plant Physiology 25, 835842.Google Scholar
Batzios, D. P. & Roupakias, D. G. (1997). HONEY: a microcomputer program for plant selection and analyses of the honeycomb designs. Crop Science 37, 744747.CrossRefGoogle Scholar
Batzios, D. P., Roupakias, D. G., Kechagia, U. & Galanopoulou-Sendouca, S. (2001). Comparative efficiency of honeycomb and conventional pedigree methods of selection for yield and fiber quality in cotton (Gossypium spp.). Euphytica 122, 203211.CrossRefGoogle Scholar
Beebe, S., Rengifo, J., Gaitan, E., Duque, M. C. & Tohme, J. (2001). Diversity and origin of Andean landraces of common bean. Crop Science 41, 854862.CrossRefGoogle Scholar
Boutraa, T. & Sanders, F. E. (2001). Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.). Journal of Agronomy and Crop Science 187, 251257.CrossRefGoogle Scholar
Brennan, J. P., Condon, A. G., Van Ginkel, M. & Reynolds, M. P. (2007). An economic assessment of the use of physiological selection for stomatal aperture-related traits in the CIMMYT wheat breeding programme. Journal of Agricultural Science, Cambridge 145, 187194.CrossRefGoogle Scholar
Ceyhan, E. (2006). Variations in grain properties of dry bean (Phaseolus vulgaris L.). International Journal of Agricultural Research 1, 116121.Google Scholar
Christakis, P. A. & Fasoulas, A. C. (2002). The effects of the genotype by environmental interaction on the fixation of heterosis in tomato. Journal of Agricultural Science, Cambridge 139, 5560.CrossRefGoogle Scholar
Debouck, D. (1991). Systematics and morphology. In Common Beans: Research for Crop Improvement (Eds van Schoonhoven, A. & Voysest, O.), pp. 55118. Wallingford, UK: CAB International.Google Scholar
Dungait, J. A. J., Docherty, G., Straker, V. & Evershed, R. P. (2008). Interspecific variation in bulk tissue, fatty acid and monosaccharide δ13C values of leaves from a mesotrophic grassland plant community. Phytochemistry 69, 20412051.CrossRefGoogle ScholarPubMed
Edmeades, G. O., Mcmaster, G. S., White, J. W. & Campos, H. (2004). Genomics and the physiologist: bridging the gap between genes and crop response. Field Crops Research 90, 518.CrossRefGoogle Scholar
Ehleringer, J. R., Klassen, S., Clayton, C., Sherill, D., Fuller-Holbrook, M., Fu, Q.-N. & Cooper, T. A. (1991). Carbon isotope discrimination and transpiration efficiency in common bean. Crop Science 31, 16111615.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Molecular Biology 40, 503537.CrossRefGoogle Scholar
Fasoula, D. A. (1990). Correlations between auto-, allo- and nil-competition and their implications in plant breeding. Euphytica 50, 5762.CrossRefGoogle Scholar
Fasoula, V. A. & Boerma, H. R. (2005). Divergent selection at ultra-low density for seed protein and oil content within soybean cultivars. Field Crops Research 91, 217229.CrossRefGoogle Scholar
Fasoula, V. A. & Boerma, H. R. (2007). Intra-cultivar variation for seed weight and other agronomic traits within three elite soybean cultivars. Crop Science 47, 367373.CrossRefGoogle Scholar
Fasoula, V. A. & Fasoula, D. A. (2002). Principles underlying genetic improvement for high and stable crop yield potential. Field Crops Research 75, 191209.CrossRefGoogle Scholar
Fasoulas, A. C. & Fasoula, V. A. (1995). Honeycomb selection designs. Plant Breeding Reviews 13, 87139.CrossRefGoogle Scholar
Gómez, O. J., Blair, M. W., Frankow-Lindberg, B. E. & Gullberg, U. (2004). Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Science 44, 14121418.Google Scholar
Gouveia, A. C. & Freitas, H. (2008). Intraspecific competition and water use efficiency in Quercus suber: evidence of an optimum tree density? Trees 22, 521530.CrossRefGoogle Scholar
Graham, P. H. & Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Research 53, 131146.CrossRefGoogle Scholar
Gonzalo, M., Vyn, T. J., Holland, J. B. & McIntyre, L. M. (2007). Mapping reciprocal effects and interactions with plant density in Zea mays L. Heredity 99, 1430.CrossRefGoogle ScholarPubMed
Hall, A. E., Richards, R. A., Condon, A. G., Wright, G. C. & Farquhar, G. D. (1994). Carbon isotope discrimination and plant breeding. Plant Breeding Reviews 12, 81113.CrossRefGoogle Scholar
Heath, M. C. & Hebblethwaite, P. D. (1987). Precision drilling combining peas (Pisum sativum L.) of contrasting leaf types at varying densities. Journal of Agricultural Science, Cambridge 108, 425430.Google Scholar
Mazer, S. J. & Wolfe, L. M. (1992). Planting density influences the expression of genetic variation in seed mass in wild radish (Raphanus sativus L.: Brassicaceae). American Journal of Botany 79, 11851193.CrossRefGoogle ScholarPubMed
Merah, O., Deléens, E., Teulat, B. & Monneveux, P. (2001 a). Productivity and carbon isotope discrimination of different durum wheat organs under a Mediterranean climate. Comptes Rendus de l’ Académie des Sciences – Series III – Sciences de la Vie 324, 5157.Google Scholar
Merah, O., Deléens, E., Souyris, I. & Monneveux, P. (2001 b). Ash content might predict carbon isotope discrimination and grain yield in durum wheat. New Phytologist 149, 275282.CrossRefGoogle ScholarPubMed
Merah, O., Deléens, E., Teulat, B. & Monneveux, P. (2002). Association between yield and carbon isotope discrimination value in different organs of durum wheat under drought. Journal of Agronomy and Crop Science 188, 426434.CrossRefGoogle Scholar
Misra, S. C., Randive, R., Rao, V. S., Sheshshayee, M. S., Serraj, R. & Monneveux, P. (2006). Relationships between carbon isotope discrimination, ash content and grain yield in wheat in the Peninsular Zone of India. Journal of Agronomy and Crop Science 192, 352362.CrossRefGoogle Scholar
Muñoz-Perea, C. G., Allen, R. G., Westermann, D. T., Wright, J. L. & Singh, S. P. (2007). Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica 155, 393402.Google Scholar
Ntanos, D. A. & Roupakias, D. G. (2001). Comparative efficiency of two breeding methods for yield and quality in rice. Crop Science 41, 345350.CrossRefGoogle Scholar
Papadopoulos, I. I., Tokatlidis, I. S., Tamoutsidis, E. G., Koutsika-Sotiriou, M. & Koutroubas, S. (2007). Crop yield potential estimation under too low density in dry bean genotypes. International Journal of Plant Breeding and Genetics 1, 7581.Google Scholar
Raeini-Sarjaz, M., Barthakur, N. N., Arnold, N. P. & Jones, P. J. H. (1998). Water stress, water use efficiency, carbon isotope discrimination and leaf gas exchange relationships of the bush bean. Journal of Agronomy and Crop Science 180, 173179.CrossRefGoogle Scholar
Rafi, M. M., Ehdaie, B. & Waines, J. G. (1992). Quality traits, carbon isotope discrimination and yield components in wild wheats. Annals of Botany 69, 467474.CrossRefGoogle Scholar
Rebetzke, G. J., Richards, R. A., Condon, A. G. & Farquhar, G. D. (2006). Inheritance of carbon isotope discrimination in bread wheat (Triticum aestivum L.). Euphytica 150, 97106.CrossRefGoogle Scholar
Royo, C., Villegas, D., Carcía Del Moral, L. F., Elhani, S., Aparicio, N., Rharrabti, Y. & Araus, J. L. (2002). Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotype differences in durum wheat yield in Spain. Australian Journal of Agricultural Research 53, 561569.CrossRefGoogle Scholar
Stiller, W. N., Read, J. J., Constable, G. A. & Reid, P. E. (2005). Selection for water use efficiency traits in a cotton breeding program: cultivar differences. Crop Science 45, 11071113.CrossRefGoogle Scholar
Tokatlidis, I. S., Tsialtas, J. T., Xynias, I. N., Tamoutsidis, E. & Irakli, M. (2004). Variation within a bread wheat cultivar for grain yield, protein content, carbon isotope discrimination and ash content. Field Crops Research 86, 3342.CrossRefGoogle Scholar
Tokatlidis, I. S., Xynias, I. N., Tsialtas, J. T. & Papadopoulos, I. I. (2006). Single-plant selection at ultra-low density to improve stability of a bread wheat cultivar. Crop Science 46, 9097.CrossRefGoogle Scholar
Tokatlidis, I. S., Tsikrikoni, C., Tsialtas, J. T., Lithourgidis, A. S. & Bebeli, P. J. (2008). Variability within cotton cultivars for yield, fibre quality and physiological traits. Journal of Agricultural Science, Cambridge 146, 483490.CrossRefGoogle Scholar
Tokatlidis, I. S., Papadopoulos, I. I., Baxevanos, D. & Koutita, O. (2010). Genotype×environment effects on single-plant selection at low density for yield and stability in climbing dry bean populations. Crop Science 50, 775783.CrossRefGoogle Scholar
Traka-Mavrona, E., Georgakis, D., Koutsika-Sotiriou, M. & Pritsa, T. (2000). An integrated approach of breeding and maintaining an elite cultivar of snap bean. Agronomy Journal 92, 10201026.CrossRefGoogle Scholar
Tsialtas, J. T., Kassioumi, M. & Veresoglou, D. S. (2002). Evaluating leaf ash content and potassium concentration as surrogates of carbon isotope discrimination in grassland species. Journal of Agronomy and Crop Science 188, 168175.CrossRefGoogle Scholar
Tsialtas, J. T., Tokatlidis, I. S., Tamoutsidis, E. & Xynias, I. N. (2005). Relationship of grain yield with carbon isotope discrimination and ash content in lines derived from a bread wheat cultivar. Journal of Agricultural Science, Cambridge 143, 275282.CrossRefGoogle Scholar
Turner, N. C. (1997). Further progress in crop water relations. Advances in Agronomy 58, 293337.CrossRefGoogle Scholar
White, J. W., Castillo, J. A. & Ehleringer, J. R. (1990). Associations between productivity, root growth and carbon isotope discrimination in Phaseolus vulgaris under water deficit. Australian Journal of Plant Physiology 17, 189198.Google Scholar
White, J. W., Castillo, J. A., Ehleringer, J. R., Garcia, J. A. C. & Singh, S. P. (1994). Relations of carbon isotope discrimination and other physiological traits to yield in common bean (Phaseolus vulgaris) under rainfed conditions. Journal of Agricultural Science, Cambridge 122, 275284.CrossRefGoogle Scholar
Zacharisen, M. H., Brick, M. A., Fisher, A. G., Ogg, J. B. & Ehleringer, J. R. (1999). Relationships between productivity and carbon isotope discrimination among dry bean lines and F2 progeny. Euphytica 105, 239250.Google Scholar