Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:53:36.939Z Has data issue: false hasContentIssue false

The quantum yield of photosynthetic electron transport evaluated by chlorophyll fluorescence as an indicator of drought tolerance in durum wheat

Published online by Cambridge University Press:  27 March 2009

Z. Flagella
Affiliation:
Istituto di Produzioni e Preparazioni Alimentari, Università di Bari, Sede di Foggia, via Napoli 25, 71100 Foggia, Italy
D. Pastore
Affiliation:
Dipartimento di Scienze Animali, Vegetali e dell' Ambiente, Università del Molise, 86100 Compobasso, Italy
R. G. Campanile
Affiliation:
Istituto Sperimentale per la Cerealicoltura, SS 16 Km 675, 71100 Foggia, Italy
N. Di Fonzo
Affiliation:
Istituto Sperimentale per la Cerealicoltura, SS 16 Km 675, 71100 Foggia, Italy

Summary

The chlorophyll fluorescence parameters ΔF/Fm′ and Fv′/Fm′, related respectively to the quantum yield of photosynthetic electron transport and to the efficiency of excitation capture by the open centres of photosystem II, have been evaluated as possible indicators of drought tolerance in durum wheat. ΔF/Fm′ and Fv′/Fm′ measurements were carried out on excised leaves, both control and dehydrated, of 25 cultivars. ΔF/Fm′ and Fv′/Fm′ values were obtained at two times after the start of fluorescence measurement: at 14 s, i.e. during the induction curve (ΔF/Fm14s and Fv′/Fm14s) and at 200s, i.e. at steady state fluorescence (ΔF/Fm200s and Fv′/Fm200s).

In dehydrated leaves a mean significant decrease of 20% (P < 0·001) was observed in ΔF/Fm14s values. In contrast, no great differences were observed between control and dehydrated leaves with regard to ΔF/Fm200s, Fv′/Fm14s and Fv′/Fm200s.

The percentage decrease of ΔF/Fm14s after dehydration was correlated with the drought susceptibility index (DSI) of the cultivars, evaluated on a yield basis and a significant correlation (r = 0·72, P < 0·001) was found.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Di Marco, G., Massacci, A. & Gabrielli, R. (1988). Drought effects on photosynthesis and fluorescence in hard wheat cultivars grown in the field. Physiologia Plantantm 74, 385390.CrossRefGoogle Scholar
Fischer, R. A. & Maurer, R. (1978). Drought resistance in spring wheat cultivars. 1. Grain yield responses. Australian Journal of Agricultural Research 29, 897912.CrossRefGoogle Scholar
Flagella, Z., Pastore, D., Campanile, R. G. & Di Fonzo, N. (1994). Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars. Journal of Agricultural Science, Cambridge 122, 183192.CrossRefGoogle Scholar
Genty, B., Briantais, J. M. & Baker, N. R. (1989). The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Ada 990, 8792.CrossRefGoogle Scholar
Govindjee, Downton, W. J. S., Fork, D. C. & Armond, P. A. (1981). Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Science Letters 20, 191194.CrossRefGoogle Scholar
Havaux, M. & Lannoye, R. (1985). Drought resistance of hard wheat cultivars measured by a rapid chlorophyll fluorescence test. Journal of Agricultural Science, Cambridge 104, 501504.CrossRefGoogle Scholar
Havaux, M., Ernez, M. & Lannoye, R. (1988). Sélection de variétés de blé dur (Triticum durum Desf.) et de blé tendre (Triticum aestivum L.) adaptées à la sécheresse par la mesure de l'extinction de la fluorescence de la chlorophylle in vivo. Agronomie 3, 193199.CrossRefGoogle Scholar
Jackson, R. B., Woodrow, I. E. & Mott, K. A. (1991). Nonsteady-state photosynthesis following an increase in photon flux density (PFD). Plant Physiology 95, 498503.CrossRefGoogle ScholarPubMed
Lichtenthaler, H. K. & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critical Reviews in Analytical Chemistry 19, S29S85.CrossRefGoogle Scholar
Mott, K. A., Woodrow, I. E. (1993). Effects of O2 and CO2 on nonsteady-state photosynthesis. Plant Physiology 102, 859866.CrossRefGoogle ScholarPubMed
Neubauer, C. & Schreiber, U. (1989 a). Photochemical and non-photochemical quenching fluorescence induced by hydrogen peroxide. Zeitschrift fur Naturforschung 44c, 262270.CrossRefGoogle Scholar
Neubauer, C. & Schreiber, U. (1989 b). Dithionite-induced fluorescence quenching does not reflect reductive activation in spinach chloroplasts. Botanica Ada 102, 314318.CrossRefGoogle Scholar
ÖGren, E. (1990). Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. Plant Physiology 93, 12801285.CrossRefGoogle ScholarPubMed
Ögren, E. & Öquist, G. (1985). Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves. Planta 166, 380388.CrossRefGoogle ScholarPubMed
Pastore, D., Flagella, Z., Rascio, A., Cedola, M. C. & Wittmer, G. (1989). Field studies on chlorophyll fluorescence as drought tolerance test in Triticum durum Desf. genotypes. Journal of Genetics and Breeding 43, 4551.Google Scholar
Schreiber, U. & Bilger, W. (1987). Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In Plant Response to Stress (Eds Tenhunen, J. D., Catarino, F. M., Lange, O. L. & Oechel, W. C.), pp. 2753. Berlin: Springer Verlag.CrossRefGoogle Scholar
Schreiber, U., Bauer, R. & Frank, U. F. (1971). Chlorophyll fluorescence induction in green plants at oxygen deficiency. In Proceedings of the 2nd International Congress of Photosynthesis (Eds Forti, G. et al. ), pp. 169179. The Hague: Dr W. Junk.Google Scholar
Schreiber, U., Reising, H. & Neubauer, C. (1991). Contrasting pH-optima of light driven O2- and H2O2- reduction in spinach chloroplasts as measured via chlorophyll fluorescence. Zeitschrift fur Naturforschung 46c, 635643.CrossRefGoogle Scholar
Stuhlfauth, T., Sültemeyer, D. F., Weinz, S. & Fock, H. P. (1988). Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata. Plant Physiology 86, 246250.CrossRefGoogle Scholar
Van Kooten, O. & Snel, J. F. H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25, 147150.CrossRefGoogle ScholarPubMed
Woodrow, I. E. & Mott, K. A. (1992). Biphasic activation of ribulose biphosphate carboxylase in spinach leaves as determined from nonsteady-state CO2 exchange. Plant Physiology 99, 298303.CrossRefGoogle Scholar