Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T19:46:58.922Z Has data issue: false hasContentIssue false

Phytochemicals and biofunctional properties of buckwheat: a review

Published online by Cambridge University Press:  27 March 2013

A. AHMED
Affiliation:
Department of Food Technology, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 46300, Pakistan
N. KHALID*
Affiliation:
Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
A. AHMAD
Affiliation:
Department of Food Technology, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 46300, Pakistan
N. A. ABBASI
Affiliation:
Department of Horticulture, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 46300, Pakistan
M. S. Z. LATIF
Affiliation:
Department of Biochemistry, Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
M. A. RANDHAWA
Affiliation:
National Institute of Food Science and Technology, University of Agriculture, Faisalabad-38040, Pakistan
*
*To whom all correspondence should be addressed. Email: nauman_khalid120@yahoo.com

Summary

A growing trend for nutraceutical and gluten-free cereal-based products highlights the need for development of new products. Buckwheat is one of the potential candidates for such products and the present paper reviews the functional and nutraceutical compounds present in common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum). The vital functional substances in buckwheat are flavonoids, phytosterols, fagopyrins, fagopyritols, phenolic compounds, resistant starch, dietary fibre, lignans, vitamins, minerals and antioxidants, which make it a highly active biological pseudocereal. Cholesterol-lowering effects that lessen the problems of constipation and obesity are important health benefits that can be achieved through the functional substances of buckwheat.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acquistucci, R. & Fornal, J. (1997). Italian buckwheat (Fagopyrum esculentum) starch: physicochemical and functional characterization and in vitro digestibility. Food/Nahrung 41, 281284.Google Scholar
Alvarez-Jubete, L., Holse, M., Hansen, V., Arendt, E. K. & Gallagher, E. (2009). Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chemistry 86, 511515.Google Scholar
Amézqueta, S., Galán, E., Fuguet, E., Carrascal, M., Abián, J. & Torres, J. (2012). Determination of d-fagomine in buckwheat and mulberry by cation exchange HPLC/ESI–Q-MS. Analytical and Bioanalytical Chemistry 402, 19531960.Google Scholar
Anderson, J. W., Baird, P., Davis, R. H. Jr, Ferreri, S., Knudtson, M., Koraym, A., Waters, V. & Williams, C. L. (2009). Health benefits of dietary fibre. Nutrition Reviews 67, 188205.CrossRefGoogle Scholar
Asano, K., Morita, M. & Fujimaki, M. (1970). Studies on the non-starchy polysaccharides of the endosperm of buckwheat. 2. The main polysaccharide of the water soluble fraction. Agricultural and Biological Chemistry 34, 15221529.Google Scholar
Asero, R., Antonicelli, L., Arena, A., Bommarito, L., Caruso, B., Colombo, G., Crivellaro, M., De Carli, M., Della Torre, E., Della Torre, F., Heffler, E., Lodi Rizzini, F., Longo, R., Manzotti, G., Marcotulli, M., Melchiorre, A., Minale, P., Morandi, P., Moreni, B., Moschella, A., Murzilli, F., Nebiolo, F., Poppa, M., Randazzo, S., Rossi, G. & Senna, G. (2009). Causes of food-induced anaphylaxis in Italian adults: a multi-centre study. International Archives of Allergy and Immunology 150, 271277.Google Scholar
Asplin, I., Galasko, G. & Larner, J. (1993). Chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proceedings of the National Academy of Sciences of the United States of America 90, 59245928.CrossRefGoogle ScholarPubMed
Aubrecht, E. & Biacs, P. A. (2001). Characterization of buckwheat grain proteins and its products. Acta Alimentaria 30, 7180.CrossRefGoogle Scholar
Barta, J., Kalinova, J., Moudry, J. & Curn, V. (2004). Effects of environmental factors on protein content and composition in buckwheat flour. Cereal Research Communications 32, 541548.Google Scholar
Baumgertel, A., Grimm, R., Eisenbeiss, W. & Kreis, W. (2003). Purification and characterization of a flavonol 3-O-beta-heterodisaccharidase from the dried herb of Fagopyrum esculentum Moench. Phytochemistry 64, 411418.CrossRefGoogle ScholarPubMed
Becker, R. (2008). Fatty acids in food cereal grains and grain products. In Fatty Acids in Foods and their Health Implications (Ed. Chow, C. Kuang), pp. 303316. Boca Raton, FL: CRC Press.Google Scholar
Bonafaccia, G. & Fabjan, N. (2003). Nutritional comparison of tartary buckwheat with common buckwheat and minor cereals. Research Reports, Biotechnical Faculty, University of Ljubljana (Slovenia) 81, 349355.Google Scholar
Bonafaccia, G., Gambelli, L., Fabjan, N. & Kreft, I. (2003 a). Trace elements in flour and bran from common and tartary buckwheat. Food Chemistry 83, 15.CrossRefGoogle Scholar
Bonafaccia, G., Marocchini, M. & Kreft, I. (2003 b). Composition and technological properties of the, flour and bran from common and tartary buckwheat. Food Chemistry 80, 915.Google Scholar
Brown, L., Rosner, B., Willett, W. W. & Sacks, F. M. (1999). Cholesterol-lowering effects of dietary fiber: a meta-analysis. American Journal of Clinical Nutrition 69, 3042.CrossRefGoogle ScholarPubMed
Brunori, A., Baviello, G., Zannettino, C., Corsini, G., Sandor, G. & Vegvari, G. (2010). The use of tartary buckwheat whole flour for bakery products: recent experience in Italy. Annals of the University Dunarea de Jos Galati Fascicle V1 – Food Technology 34, 3338.Google Scholar
Butters, T. D., Dwek, R. A. & Platt, F. M. (2000). Inhibition of glycosphingolipid biosynthesis: application to lysosomal storage disorders. Chemical Reviews 100, 46834696.CrossRefGoogle ScholarPubMed
Campbell, C. G. (1997). Buckwheat Fagopyrum esculentum Moench. Promoting the Conservation and Use of Underutilized and Neglected Crops 19. Rome, Italy: Institute of Plant Genetics and Crop Plant Research; Gatersleben/International Plant Genetic Resources Institute.Google Scholar
Cassidy, A., Bingham, S. A. & Cummings, J. H. (1994). Starch intake and colorectal cancer risk: an international comparison. British Journal of Cancer 69, 937942.Google Scholar
Cawoy, V., Kinet, J. M. & Jacquemart, A. L. (2008). Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Annals of Botany 102, 675684.Google Scholar
Chao, P. D. L., Hsiu, S. L. & Hou, Y. C. (2002). Flavonoids in herbs: biological fates and potential interactions with xenobiotics. Journal of Food Drug and Analysis 10, 219228.Google Scholar
Chen, C. C., Huang, Y. L., Huang, F. I., Wang, C. W. & Ou, J. C. (2001). Water-soluble glycosides from Ruta graveolens. Journal of Natural Products 64, 990992.CrossRefGoogle ScholarPubMed
Christa, K. & Soral-Smietana, M. (2008). Buckwheat grains and buckwheat products nutritional and prophylactic value of their components a review. Czech Journal of Food Science 26, 153162.Google Scholar
Christa, K., Soral-Smietana, M. & Lewandowicz, G. (2009). Buckwheat starch: structure, functionality and enzyme in vitro susceptibility upon the roasting process. International Journal of Food Science and Nutrition 60, 140154.Google Scholar
Cid, M. B., Alfonso, F. & Martin-Lomas, M. (2004). Synthesis of fagopyritols A1 and B1 from D-chiro-inositol. Carbohydrate Research 339, 23032307.Google Scholar
Czerwiński, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M., Katrich, E., Trakhtenberg, S. & Gorinstein, S. (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. Journal of Nutritional Biochemistry 15, 622629.CrossRefGoogle ScholarPubMed
Dietrych-Szostak, D. & Oleszek, W. (1999). Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. Journal of Agricultural and Food Chemistry 47, 43844387.CrossRefGoogle ScholarPubMed
Dziedzic, K., Górecka, D., Kucharska, M. & Przybylska, B. (2012). Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Research International 47, 279283.Google Scholar
Edwardson, S. E. (1995). Using growing degree days to estimate optimum windrowing time in buckwheat. In Current Advances in Buckwheat Research: 6th International Symposium on Buckwheat in Shinshu, 24–29 August 1995 (Eds Matano, T. & Ujihara, A.), pp. 509514. Nagano, Japan: Shinshu University.Google Scholar
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C. & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chemistry 124, 411421.Google Scholar
Englyst, H. N., Wiggins, H. S. & Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107, 307318.Google Scholar
Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46 (Suppl. 2), S33S50.Google Scholar
Esposito, F., Arlotti, G., Bonifati, A. M., Napolitano, A., Vitale, D. & Fogliano, V. (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Research International 38, 11671173.Google Scholar
Fabjan, N., Rode, J., Kosir, I. J., Wang, Z. H., Zhang, Z. & Kreft, I. (2003). Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of Agricultural and Food Chemistry 51, 64526455.Google Scholar
FAOSTAT (2013). FAO Statistical Databases. Rome: FAO. Available online at http://faostat.fao.org/ (verified 24 February 2013).Google Scholar
Farrell, D. J. (1978). A nutritional evaluation of buckwheat (Fagopyrum esculentum). Animal Feed Science and Technology 3, 95108.CrossRefGoogle Scholar
Fonteles, M. C., Almeida, M. Q. & Larner, J. (2000). Antihyperglycemic effects of 3-O-methyl-d-chiro-inositol and d-chiro-inositol associated with manganese in streptozotocin diabetic rats. Hormone and Metabolic Research 32, 129132.Google Scholar
Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreutz, H., Wahala, K., Montesano, R. & Schweigerer, L. (1997). Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Research 57, 29162921.Google Scholar
Fujino, K., Funatsuki, H., Inada, M., Shimono, Y. & Kikuta, Y. (2001). Expression, cloning, and immunological analysis of buckwheat (Fagopyrum esculentum Moench) seed storage proteins. Journal of Agricultural and Food Chemistry 49, 18251829.Google Scholar
Gaberscik, A., Voncina, M., Trost, T., Germ, M. & Bjorn, L. O. (2002). Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. Journal of Photochemistry and Photobiology B-Biology 66, 3036.Google Scholar
Gong, G., Qin, Y., Huang, W., Zhou, S., Yang, X. & Li, D. (2010). Rutin inhibits hydrogen peroxide-induced apoptosis through regulating reactive oxygen species mediated mitochondrial dysfunction pathway in human umbilical vein endothelial cells. European Journal of Pharmacology 628, 2735.Google Scholar
Górecka, D., Korczak, J., Konieczny, P., Hęś, M. & Flaczyk, E. (2005). Adsorption of bile acids by cereal products. Cereal Foods World 50, 176178.Google Scholar
Górecka, D., Hęś, M., Szymandera-Buszka, K. & Dziedzic, K. (2009). Contents of selected bioactive components in buckwheat groats. ACTA Scientiarum Polonorum: Technologia Alimentaria 8, 7583.Google Scholar
Górecka, D., Dziedzic, K. & Sell, S. (2010). The influence of the technological processes applied to production of buckwheat groats on the dietary fibre content. Nauka Przyroda Technologie 4, 2, #16 (In Polish).Google Scholar
Gulpinar, A. R., Erdogan Orhan, I., Kan, A., Senol, F. S., Celik, S. A. & Kartal, M. (2011). Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. Food Research International 46, 536543.Google Scholar
Guo, X., Yao, H. & Chen, Z. (2007). Effect of heat, rutin and disulfide bond reduction on in vitro pepsin digestibility of Chinese tartary buckwheat protein fractions. Food Chemistry 102, 118122.Google Scholar
Guo, X. N. & Yao, H. Y. (2006). Fractionation and characterization of tartary buckwheat flour proteins. Food Chemistry 98, 9094.Google Scholar
Hagels, H. (1999). Fagopyrum esculentum Moench. Chemical review. Zbornik BFUL 73, 2938.Google Scholar
Hagels, H. (2007). Sekundare Pflanzeninhaltstofe des Buchweizen (Secondary plant compounds of buckwheat: the effects of rutin, extraction of rutin from buckwheat leaves). In Das Buchweizen Buch: mit Rezepten aus aller Welt (Eds Kreft, I., Ries, C. & Zewen, C.), pp. 103109. Arzfeld, Luxemburg: Islek ohne Grenzen.Google Scholar
Hammer, K. (1986). Polygonaceae. In Rudolf Mansfelds Verzeichnis Landwirtschaftlicher und Gärtnerischer Kulturpflanzen (ohne Zierpflanzen) (Ed. Schultze-Motel, J.), pp. 103122. Berlin: Akademie-Verlag.Google Scholar
He, J., Klag, M. J., Whelton, P. K., Mo, J. P., Chen, J. Y., Qian, M. C., Mo, P. S. & He, G. Q. (1995). Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China. American Journal of Clinical Nutrition 61, 366372.Google Scholar
Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J. & Vavreinova, S. (2002). Buckwheat – the source of antioxidant activity in functional foods. Food Research International 35, 207211.Google Scholar
Horbowicz, M. & Obendorf, R. L. (1992). Changes in sterols and fatty-acids of buckwheat endosperm and embryo during seed development. Journal of Agricultural and Food Chemistry 40, 745750.Google Scholar
Horbowicz, M., Brenac, P. & Obendorf, R. L. (1998). Fagopyritol B1, O-alpha-d-galactopyranosyl-(1→2)-d-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 205, 111.CrossRefGoogle Scholar
Huff, M. W. & Carroll, K. K. (1980). Effects of dietary protein on turnover, oxidation, and absorption of cholesterol, and on steroid excretion in rabbits. Journal of Lipid Research 21, 546558.CrossRefGoogle ScholarPubMed
Hung, P. V. & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chemistry 109, 325331.Google Scholar
Ikeda, K. (2002). Buckwheat composition, chemistry, and processing. Advances in Food and Nutrition Research 44, 395434.Google Scholar
Ikeda, K. & Asami, Y. (2000). Mechanical characteristics of buckwheat noodles. Fagopyrum 17, 6772.Google Scholar
Ikeda, K. & Kishida, M. (1993). Digestibility of proteins in buckwheat seed. Fagopyrum 13, 2124.Google Scholar
Ikeda, K., Oku, M., Kusano, T. & Yasumoto, K. (1986). Inhibitory potency of plant antinutrients towards the in vitro digestibility of buckwheat protein. Journal of Food Science 51, 15271530.Google Scholar
Ikeda, K., Sakaguchi, T., Kusano, T. & Yasumoto, K. (1991). Endogenous factors affecting protein digestibility in buckwheat. Cereal Chemistry 68, 424427.Google Scholar
Ikeda, S. & Yamashita, Y. (1994). Buckwheat as a dietary source of zinc, copper and manganese. Fagopyrum 14, 2934.Google Scholar
Ikeda, S., Yamashita, Y. & Kreft, I. (1999). Mineral composition of buckwheat by-products and its processing characteristics in konjak preparation. Fagopyrum 16, 8994.Google Scholar
Ikeda, S., Tomura, K., Yamashita, Y. & Kreft, I. (2001). Minerals in buckwheat flours subjected to enzymatic digestion. Fagopyrum 18, 4548.Google Scholar
Ikeda, S., Tomura, K. & Kreft, I. (2002). Nutritional characteristics of iron in buckwheat flour. Fagopyrum 19, 7982.Google Scholar
Ikeda, S., Tomura, K., Miya, M. & Kreft, I. (2003). Changes in the solubility of the minerals in buckwheat noodles occurring by processing, cooking and enzymatic digestion. Fagopyrum 20, 6771.Google Scholar
Ikeda, S., Tomura, K., Lin, L. & Kreft, I. (2004). Nutritional characteristics of minerals in Tartary buckwheat. Fagopyrum 21, 7984.Google Scholar
Ikeda, S., Yamashita, Y., Kusumoto, K. & Kreft, I. (2005). Nutritional characteristics of minerals in various buckwheat groats. Fagopyrum 22, 7175.Google Scholar
Ikeda, S., Yamashita, Y., Tomura, K. & Kreft, I. (2006). Nutritional comparison in mineral characteristics between buckwheat and cereals. Fagopyrum 23, 6165.Google Scholar
Im, J. S., Huff, H. E. & Hsieh, F. H. (2003). Effects of processing conditions on the physical and chemical properties of buckwheat grit cakes. Journal of Agricultural and Food Chemistry 51, 659666.CrossRefGoogle ScholarPubMed
Inglett, G. E., Rose, D. J., Chen, D., Stevenson, D. G. & Biswas, A. (2010). Phenolic content and antioxidant activity of extracts from whole buckwheat (Fagopyrum esculentum Moench) with or without microwave irradiation. Food Chemistry 119, 12161219.Google Scholar
Inglett, G. E., Chen, D., Berhow, M. & Lee, S. (2011). Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chemistry 125, 923929.CrossRefGoogle Scholar
Iwami, K. (1998). Antitumor effects of resistant proteins in soybean. FOOD Style 21, 4446.Google Scholar
Izydorczyk, M., Symons, S. J. & Dexter, G. E. (2002). Fractionation of wheat and barley. In Whole Grain Foods in Health and Disease (Eds Marquart, L., Slavin, J. L. & Fulcher, R.), pp. 4782. St. Paul, MN: American Association of Cereal Chemists.Google Scholar
Javornik, B. & Kreft, I. (1984). Characterization of buckwheat proteins. Fagopyrum 4, 3038.Google Scholar
Javornik, B., Eggum, B. O. & Kreft, I. (1981). Studies on protein fractions and protein quality of buckwheat. Genetika 13, 115118.Google Scholar
Jiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J. A. & Briggs, C. J. (2007). Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International 40, 356364.Google Scholar
Joshi, B. D. & Rana, J. C. (1995). Stability analysis in buckwheats (Fagopyrum species). Indian Journal of Agricultural Sciences 65, 588590.Google Scholar
Kato, A., Asano, N., Kizu, H., Matsui, K., Watson, A. A. & Nash, R. J. (1997). Fagomine isomers and glycosides from Xanthocercis zambesiaca. Journal of Natural Products 60, 312314.Google Scholar
Kato, N., Kayashita, J. & Tomotake, H. (2001). Nutritional and physiological functions of buckwheat protein. Recent Research and Developmental Nutrition 4, 113119.Google Scholar
Kawa, J. M., Taylor, C. G. & Przybylski, R. (2003). Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. Journal of Agricultural and Food Chemistry 51, 72877291.Google Scholar
Kayashita, J., Shimaoka, I. & Nakajyoh, M. (1995). Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol-enriched diets. Nutrition Research 15, 691698.CrossRefGoogle Scholar
Kayashita, J., Shimaoka, I., Nakajoh, M. & Kato, N. (1996). Feeding of buckwheat protein extract reduces hepatic triglyceride concentration, adipose tissue weight, and hepatic lipogenesis in rats. Journal of Nutritional Biochemistry 7, 555559.Google Scholar
Kennington, A. S., Hill, C. R., Craig, J., Bogardus, C., Raz, I., Ortmeyer, H. K., Hansen, B. C., Romero, G. & Larner, J. (1990). Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. New England Journal of Medicine 323, 373378.Google Scholar
Kim, S. L., Son, Y. K., Hwang, J. J., Kim, S. K., Hur, H. S. & Park, C. H. (2001). Development and utilization of buckwheat sprouts as functional vegetables. Fagopyrum 18, 4954.Google Scholar
Kim, H. J., Park, K. J. & Lim, J. H. (2011). Metabolomic analysis of phenolic compounds in buckwheat (Fagopyrum esculentum M.) sprouts treated with methyl jasmonate. Journal of Agricultural and Food Chemistry 59, 57075713.CrossRefGoogle ScholarPubMed
Kim, S. L., Kim, S. K. & Park, C. H. (2002). Comparisons of lipid, fatty acids and tocopherols of different buckwheat species. Food Science and Biotechnology 11, 332336.Google Scholar
Kim, S. L., Kim, S. K. & Park, C. H. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International 37, 319327.Google Scholar
Kitabayashi, H., Ujihara, A., Hirose, T. & Minami, M. (1995). Varietal differences and heritability for rutin content in common buckwheat, Fagopyrum esculentum Moench. Japan Journal of Breeding 45, 7579.Google Scholar
Koyama, M. & Sakamura, S. (1974). The structure of a new piperidine derivative from buckwheat seeds (Fagopyrum esculentum Moench). Agricultural and Biological Chemistry 38, 11111112.Google Scholar
Kreft, I. (1983). Buckwheat breeding perspectives. In Buckwheat Research 1983: Proceedings of the 2nd International Symposium on Buckwheat held in Miyazaki, Japan, Sept. 7–10 1983 (Eds Nagatomo, T. & Adachi, T.), pp. 312. Miyazaki, Japan: Kuroda-toshado Printing Co. Japan.Google Scholar
Kreft, I. & Germ, M. (2008). Organically grown buckwheat as a healthy food and a source of natural antioxidants. Agronomski Glasnik 4, 397406.Google Scholar
Kreft, S., Knapp, M. & Kreft, I. (1999). Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of Agricultural and Food Chemistry 47, 46494652.Google Scholar
Kreft, S., Strukelj, B., Gaberscik, A. & Kreft, I. (2002). Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. Journal of Experimental Botany 53, 18011804.Google Scholar
Krkoskova, B. & Mrazova, Z. (2005). Prophylactic components of buckwheat. Food Research International 38, 561568.CrossRefGoogle Scholar
Kuntić, V., Filipović, I. & Vujić, Z. (2011). Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules 16, 13781388.Google Scholar
Lachmann, S. & Adachi, T. (1990). Studies on the influence of photoperiod and temperature on floral traits in buckwheat (Fagopyrum esculentum Moench) under controlled stress conditions. Plant Breeding 105, 248253.Google Scholar
Landberg, R., Sun, Q., Rimm, E. B., Cassidy, A., Scalbert, A., Mantzoros, C. S., Hu, F. B. & van Dam, R. M. (2011). Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in U.S. women. Journal of Nutrition 141, 618625.Google Scholar
Larner, J., Huang, L. C., Schwartz, C. F. W., Oswald, A. S., Shen, T. Y., Kinter, M., Tang, G. & Zeller, K. (1988). Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galactosamine and d-chiro-inositol. Biochemical and Biophysical Research Communications 151, 14161426.Google Scholar
Li, S. Q. & Zhang, Q. H. (2001). Advances in the development of functional foods from buckwheat. Critical Reviews in Food Science and Nutrition 41, 451464.Google Scholar
Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D. & Mau, J. L. (2009). Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chemistry 112, 987991.Google Scholar
Lintschinger, J., Fuchs, N., Moser, H., Jager, R., Hlebeina, T., Markolin, G. & Gossler, W. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods for Human Nutrition 50, 223237.Google Scholar
Lipkin, M., Reddy, B., Newmark, H. & Lamprecht, S. A. (1999). Dietary factors in human colorectal cancer. Annual Review of Nutrition 19, 545586.Google Scholar
Liu, Z., Ishikawa, W., Huang, X., Tomotake, H., Kayashita, J., Watanabe, H. & Kato, N. (2001). A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. Journal of Nutrition 131, 18501853.Google Scholar
Lorenz, K. & Dilsaver, W. (1982). Buckwheat (Fagopyrum esculentum) starch – physicochemical properties and functional-characteristics. Starch 34, 217220.Google Scholar
Mazza, G. (1988). Lipid-content and fatty-acid composition of buckwheat seed. Cereal Chemistry 65, 122126.Google Scholar
Mehta, R. S. (2005). Dietary fibre benefits. Cereal Foods World 50, 6671.Google Scholar
Mendonça, S., Saldiva, P. H., Cruz, R. J. & Arêas, J. A. G. (2009). Amaranth protein presents cholesterol-lowering effect. Food Chemistry 116, 738742.Google Scholar
Michalova, A., Dotlacil, L. & Cejka, L. (1998). Evaluation of common buckwheat cultivars. Rostlinna Vyroba 44, 361368.Google Scholar
Milisavljevic, M. D., Timotijevic, G. S., Radovic, S. R., Brkljacic, J. M., Konstantinovic, M. M. & Maksimovic, V. R. (2004). Vicilin-like storage globulin from buckwheat (Fagopyrum esculentum Moench) seeds. Journal of Agricultural and Food Chemistry 52, 52585262.Google Scholar
Mishra, S. & Rai, T. (2006). Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids 20, 557566.Google Scholar
Mitsunaga, T., Matsuda, M., Shimizu, M. & Iwashima, A. (1986). Isolation and properties of a thiamine-binding protein from buckwheat seed. Cereal Chemistry 63, 332335.Google Scholar
Morishita, T., Ishiguro, K. & Sato, T. (1998). Use of nuclear magnetic resonance method for detection of rutin-degrading enzyme activity in Fagopyrum esculentum and F. tataricum. Breeding Science 48, 1721.Google Scholar
Morishita, T., Yamaguchi, H. & Degi, K. (2007). The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Production Science 10, 99104.Google Scholar
Mukasa, Y., Suzuki, T. & Honda, Y. (2009). Suitability of rice-tartary buckwheat for crossbreeding and for utilization of rutin. JARQ – Japan Agricultural Research Quarterly 43, 199206.Google Scholar
Nestler, J. E., Jakubowicz, D. J., Reamer, P., Gunn, R. D. & Allan, G. (1999). Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. New England Journal of Medicine 340, 13141320.Google Scholar
Nojima, H., Kimura, I., Chen, F. J., Sugihara, Y., Haruno, M., Kato, A. & Asano, N. (1998). Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. Journal of Natural Products 61, 397400.CrossRefGoogle ScholarPubMed
Obendorf, R. L. (1997). Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Science Research 7, 6374.Google Scholar
Obendorf, R. L., Steadman, K. J., Fuller, D. J., Horbowicz, M. & Lewis, B. A. (2000). Molecular structure of fagopyritol Al (O-alpha-d-galactopyranosyl-(1→3)-d-chiro-inositol) by NMR. Carbohydrate Research 328, 623627.Google Scholar
Obendorf, R. L., Sensenig, E. M., Wu, J., Ohashi, M., O'Sullivan, T. E., Kosina, S. M. & Schnebly, S. R. (2008). Soluble carbohydrates in mature soybean seed after feeding d-chiro-inositol, myo-inositol, or d-pinitol to stem-leaf-pod explants of low-raffinose, low-stachyose lines. Plant Science 175, 650655.Google Scholar
Ogungbenle, H. N. (2003). Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Sciences and Nutrition 54, 153158.Google Scholar
Ohnishi, O. (1993). Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. 8. Local differentiation of land races in Europe and the Silk Road. Japanese Journal of Genetics 68, 303316.Google Scholar
Ohnishi, O. & Matsuoka, Y. (1996). Search for the wild ancestor of buckwheat 0·2. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes and Genetic Systems 71, 383390.Google Scholar
Ohsawa, R. & Tsutsumi, T. (1995). Inter-varietal variations of rutin content in common buckwheat flour (Fagopyrum esculentum Moench). Euphytica 86, 183189.Google Scholar
Ookubo, K. (1992). Nutrition and functionality of soybean. In Science of Soybean (Eds Yamauchi, F. & Ookubo, K.), pp. 5775. Tokyo: Asakura-Shoten Press.Google Scholar
Oomah, B. D. & Mazza, G. (1996). Flavonoids and antioxidative activities in buckwheat. Journal of Agricultural and Food Chemistry 44, 17461750.Google Scholar
Ortmeyer, H. K., Larner, J. & Hansen, B. C. (1995). Effects of D-chiroinositol added to a meal on plasma glucose and insulin in hyperinsulinemic rhesus monkeys. Obesity Research 3, 605S608S.Google Scholar
Park, B. J., Park, J. I., Chang, K. J. & Park, C. H. (2004). Comparison in rutin content in seed and plant of tartary buckwheat (Fagopyrum tataricum). In Advances in Buckwheat Research: Proceedings of the 9th International Symposium on Buckwheat, Prague, 18–22 August 2004 (Eds Faberová, I., Dvořáček, V., Čepková, P., Hon, I., Holubec, V. & Stehno, Z.), pp. 626629. Prague, Czech Republic: Research Institute of Crop Production.Google Scholar
Park, J. W., Kang, D. B., Kim, C. W., Ko, S. H., Yum, H. Y., Kim, K. E., Hong, C. S. & Lee, K. Y. (2000). Identification and characterization of the major allergens of buckwheat. Allergy 55, 10351041.CrossRefGoogle ScholarPubMed
Park, N. I., Li, X., Uddin, M. R. & Park, S. U. (2011). Phenolic compound production by different morphological phenotypes in hairy root cultures of Fagopyrum tataricum gaertn. Archives of Biological Sciences 63, 193198.Google Scholar
Paulícková, I., Vyzralova, K., Holasová, M., Fiedlerová, V. & Vavreinová, S. (2004). Buckwheat as functional food. In International Symposium on Buckwheat (Eds Faberová, I., Dvořáček, V., Čepková, P., Hon, I. & Holubec, V.), pp. 587592. Prague, Czech Republic: Research Institute of Crop Production.Google Scholar
Pomeranz, Y. & Lorenz, K. (1983). Buckwheat – structure, composition, and utilization. Critical Reviews in Food Science and Nutrition 19, 213258.Google Scholar
Przybylski, R., Lee, Y. C. & Eskin, N. A. M. (1998). Antioxidant and radical-scavenging activities of buckwheat seed components. Journal of the American Oil Chemists’ Society 75, 15951601.Google Scholar
Qian, J. Y. & Kuhn, M. (1999). Physical properties of buckwheat starches from various origins. Starch 51, 8185.Google Scholar
Qin, P., Wang, Q., Shan, F., Hou, Z. & Ren, G. (2010). Nutritional composition and flavonoids content of flour from different buckwheat cultivars. International Journal of Food Science and Technology 45, 951958.Google Scholar
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J. C., Bailleul, F. & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology 72, 3542.Google Scholar
Radovic, R. S., Maksimovic, R. V., Brkljacic, M. J., Varkonji Gasic, I. E. & Savic, P. A. (1999). 2S albumin from buckwheat (Fagopyrum esculentum Moench) seeds. Journal of Agricultural and Food Chemistry 47, 14671470.Google Scholar
Radovic, S. R., Maksimovic, V. R. & Varkonji Gasic, E. I. (1996). Characterization of buckwheat seed storage proteins. Journal of Agricultural and Food Chemistry 44, 972974.Google Scholar
Ranhotra, G. S., Gelroth, J. A., Glaser, B. K., Lorenz, K. J. & Johnson, D. L. (1993). Composition and protein nutritional quality of quinoa. Cereal Chemistry 70, 303305.Google Scholar
Rapala-Kozik, M., Chernikevich, I. P. & Kozik, A. (1999). Ligand–protein interaction in plant seed thiamine-binding proteins. Binding of various thiamine analogues to the sepharose-immobilized buckwheat-seed protein. Journal of Protein Chemistry 18, 721728.Google Scholar
Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L., Lu, Y., Zhang, Z. & Wang, Z. (2003). Molecular basis of Fas and cytochrome c pathways of apoptosis induced by tartary buckwheat flavonoid in HL-60 cells. Methods and Findings in Experimental and Clinical Pharmacology 25, 431436.Google Scholar
Saeki, Y., Shiozawa, K., Yanagisawa, K. & Shibata, T. (1990). Adrenaline increases the rate of cross-bridge cycling in rat cardiac muscle. Journal of Molecular and Cellular Cardiology 22, 453460.Google Scholar
Satoh, R., Koyano, S., Takagi, K., Nakamura, R., Teshima, R. & Sawada, J. (2008). Immunological characterization and mutational analysis of the recombinant protein BWp16, a major allergen in buckwheat. Biological and Pharmaceutical Bulletin 31, 10791085.Google Scholar
Scheppach, W., Sommer, H., Kirchner, T., Pagneli, G. H., Bartram, P., Christl, S., Richter, F., Dusel, G. & Kasper, H. (1992). Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 5156.Google Scholar
Sedej, I., Mandic, A., Sakac, M., Misan, A. & Tumbas, V. (2010). Comparison of antioxidant components and activity of buckwheat and wheat flours. Cereal Chemistry 87, 387392.Google Scholar
Sedej, I., Sakac, M., Mandic, A., Misan, A., Pestoric, M., Simurina, O. & Canadanovic-Brunet, J. (2011). Quality assessment of gluten-free crackers based on buckwheat flour. LWT – Food Science and Technology 44, 694699.Google Scholar
Sensoy, I., Rosen, R. T., Ho, C. T. & Karwe, M. V. (2006). Effect of processing on buckwheat phenolics and antioxidant activity. Food Chemistry 99, 388393.Google Scholar
Skrabanja, V. & Kreft, I. (1998). Resistant starch formation following autoclaving of buckwheat (Fagopyrum esculentum Moench) groats. An in vitro study. Journal of Agricultural and Food Chemistry 46, 20202023.Google Scholar
Skrabanja, V., Liljeberg Elmstahl, H. G. M., Kreft, I. & Bjorck, I. M. E. (2001). Nutritional properties of starch in buckwheat products: studies in vitro and in vivo. Journal of Agricultural and Food Chemistry 49, 490496.CrossRefGoogle ScholarPubMed
Skrabanja, V., Kreft, I., Golob, T., Modic, M., Ikeda, S., Ikeda, K., Kreft, S., Bonafaccia, G., Knapp, M. & Kosmelj, K. (2004). Nutrient content in buckwheat milling fractions. Cereal Chemistry 81, 172176.CrossRefGoogle Scholar
Smith, H. L. (1909). Buckwheat poisoning with report of a case in man. Archives of Internal Medicine 3, 350359.Google Scholar
Soral-Smietana, M., Fornal, L. & Fornal, J. (1984). Characteristics of buckwheat grain starch and the effect of hydrothermal processing upon its chemical-composition, properties and structure. Starch 36, 153158.Google Scholar
Steadman, K. J., Burgoon, M. S., Schuster, R. L., Lewis, B. A., Edwardson, S. E. & Obendorf, R. L. (2000). Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. Journal of Agricultural and Food Chemistry 48, 28432847.Google Scholar
Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E. & Obendorf, R. L. (2001 a). Buckwheat seed milling fractions: description, macronutrient composition and dietary fibre. Journal of Cereal Science 33, 271278.Google Scholar
Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E. & Obendorf, R. L. (2001 b). Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. Journal of the Science of Food and Agriculture 81, 10941100.Google Scholar
Steadman, K. J., Fuller, D. J. & Obendorf, R. L. (2001 c). Purification and molecular structure of two digalactosyl D-chiro-inositols and two trigalactosyl d-chiro-inositols from buckwheat seeds. Carbohydrate Research 331, 1925.Google Scholar
Sun, T. & Ho, C. T. (2005). Antioxidant activities of buckwheat extracts. Food Chemistry 90, 743749.Google Scholar
Szczecinski, P., Gryff-Keller, A., Horbowicz, M. & Obendorf, R. L. (1998). NMR investigation of the structure of fagopyritol B1 from buckwheat seeds. Bulletin of the Polish Academy of Sciences: Chemistry 46, 913.Google Scholar
Takahama, U. & Hirota, S. (2010). Fatty acids, epicatechin-dimethylgallate, and rutin interact with buckwheat starch inhibiting its digestion by amylase: implications for the decrease in glycemic index by buckwheat flour. Journal of Agricultural and Food Chemistry 58, 1243112439.Google Scholar
Tang, C.-H. & Wang, X.-Y. (2010). Physicochemical and structural characterisation of globulin and albumin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Chemistry 121, 119126.Google Scholar
Tian, Q., Li, D. & Patil, B. S. (2002). Identification and determination of flavonoids in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) by high-performance liquid chromatography with electrospray ionisation mass spectrometry and photodiode array ultraviolet detection. Phytochemical Analysis 13, 251256.Google Scholar
Tohgi, K., Kohno, K., Takahashi, H., Matsuo, H., Nakayama, S. & Morita, E. (2011). Usability of Fag e 2 ImmunoCAP in the diagnosis of buckwheat allergy. Archives of Dermatological Research 303, 635642.Google Scholar
Tomotake, H., Shimaoka, I., Kayashita, J., Yokoyama, F., Nakajoh, M. & Kato, N. (2000). A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. Journal of Nutrition 130, 16701674.Google Scholar
Tomotake, H., Shimaoka, I., Kayashita, J., Yokoyama, F., Nakajoh, M. & Kato, N. (2001). Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet. Bioscience, Biotechnology and Biochemistry 65, 14121414.Google Scholar
Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M. & Kato, N. (2002). Physico-chemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry 50, 21252129.Google Scholar
Tsuzuki, W., Ogata, Y., Akasaka, K., Shibata, S. & Suzuki, T. (1991). Fatty-acid composition of selected buckwheat species by fluorometric high-performance liquid-chromatography. Cereal Chemistry 68, 365369.Google Scholar
Ueda, T., Coseo, M. P., Harrell, T. J. & Obendorf, R. L. (2005). A multifunctional galactinol synthase catalyzes the synthesis of fagopyritol A1 and fagopyritol B1 in buckwheat seed. Plant Science 168, 681690.Google Scholar
Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L. & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90, 25412547.Google Scholar
Verardo, V., Arraez-Roman, D., Segura-Carretero, A., Marconi, E., Fernandez-Gutierrez, A. & Caboni, M. F. (2011). Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: effect of thermal processing from farm to fork. Journal of Agricultural and Food Chemistry 59, 77007707.Google Scholar
Watanabe, M. (1998). Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. Journal of Agricultural and Food Chemistry 46, 839845.Google Scholar
Wijngaard, H. H. & Arendt, E. K. (2006). Buckwheat. Cereal Chemistry 83, 391401.CrossRefGoogle Scholar
Ye, N. G. & Guo, G. Q. (1992). Classification, origin and evolution of genus Fagopyrum in China. In Proceedings of the 5th International Symposium on Buckwheat, Taiyuan, China (Eds Lin, R., Zhou, M., Tao, Y., Li, J. & Zhang, Z.), pp. 1928. Beijing: Chinese Agricultural Publishing House.Google Scholar
Yildizoğlu-Ari, N., Altan, V. M., Altinkurt, O. & Öztürk, Y. (1991). Pharmacological effects of rutin. Phytotherapy Research 5, 1923.Google Scholar
Zdunczyk, Z., Flis, M., Zielinski, H., Wroblewska, M., Antoszkiewicz, Z. & Juskiewicz, J. (2006). In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. Journal of Agricultural and Food Chemistry 54, 41684175.Google Scholar
Zechel, D. L. & Withers, S. G. (2000). Glycosidase mechanisms: anatomy of a finely tuned catalyst. Accounts of Chemical Research 33, 1118.Google Scholar
Zheng, S. J., Ma, J. F. & Matsumoto, H. (1998). High aluminum resistance in buckwheat – I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology 117, 745751.Google Scholar
Zielinski, H. & Kozlowska, H. (2000). Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry 48, 20082016.Google Scholar
Zielinski, H., Ciska, E. & Kozlowska, H. (2001). The cereal grains: focus on vitamin E. Czech Journal of Food Science 19, 182188.Google Scholar