Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T21:05:58.006Z Has data issue: false hasContentIssue false

Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils

Published online by Cambridge University Press:  27 July 2015

H. M. YUAN
Affiliation:
College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
M. BLACKWELL
Affiliation:
Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK
S. MCGRATH
Affiliation:
Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
T. S. GEORGE
Affiliation:
The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
S. H. GRANGER
Affiliation:
Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK
J. M. B. HAWKINS
Affiliation:
Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK
S. DUNHAM
Affiliation:
Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
J. B. SHEN*
Affiliation:
College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
*
*To whom all correspondence should be addressed. Email: 08036@cau.edu.cn

Summary

To cope with phosphorus (P) deficiency, plants adapt root morphology to enhance inorganic P (Pi) acquisition from soil by allocating more biomass to roots, but whether the responses can be modified across gradients of P supply is not fully understood. The present study examined changes in root-length density (RLD), root-hair density (RHD) and root-hair length (RHL) of wheat (Triticum aestivum L.) in two contrasting soils, the Rough and Barnfield soils. Wheat plants were grown for 3 weeks in thin-plate rhizotrons in two soils with additions of 0, 10, 25, 50, 100 and 200 mg P/kg soil. Contrary to published literature, as P additions increased it was observed that a concomitant increase in RHL (250 to 1054 µm in the Rough soil and 303–1075 µm in the Barnfield soil) and RHD (57 to 122/mm in the Rough soil and 56–120/mm in the Barnfield soil), while RLD generally decreased (2480–1130 cm/cm3 in the Rough soil and 1716–865 cm/cm3 in the Barnfield soil). The levels of added P that resulted in critical P concentrations in the soils enabling maximum shoot biomass production were 50 mg/kg P in the Rough soil and 100 mg/kg P in the Barnfield soil, and these additions influenced root morphological changes. Under severe P deficiency, P supply increased RHL and RHD, but RLD was decreased. Improvement in lateral root and root-hair responses in wheat at extreme P deficiency may be a worthy target for breeding more sustainable genotypes for future agroecosystems.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barley, K. P. & Rovira, A. D. (1970). The influence of root hairs on the uptake of phosphate. Communications in Soil Science and Plant Analysis 1, 287292.CrossRefGoogle Scholar
Bates, T. R. & Lynch, J. P. (1996). Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment 19, 529538.CrossRefGoogle Scholar
Bates, T. R. & Lynch, J. P. (2001). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil 236, 243250.CrossRefGoogle Scholar
Batjes, N. H. (1997). A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use and Management 13, 916.CrossRefGoogle Scholar
Brouwer, R. (1983). Functional equilibrium: sense or nonsense? Netherlands Journal of Agricultural Science 31, 335348.CrossRefGoogle Scholar
Brown, L. K., George, T. S., Thompson, J. A., Wright, G., Lyon, J., Depuy, L., Hubbard, S. F. & White, P. J. (2012). What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Annals of Botany 110, 319328.CrossRefGoogle ScholarPubMed
Brown, L. K., George, T. S., Barrett, G. E., Hubbard, S. F. & White, P. J. (2013 a). Interactions between root hair length and arbuscularmycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). Plant and Soil 372, 195205.CrossRefGoogle Scholar
Brown, L. K., George, T. S., Dupuy, L. & White, P. J. (2013 b). A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Annals of Botany 112, 317330.CrossRefGoogle ScholarPubMed
Caradus, J. R. (1979). Selection for root hair length in white clover (Trifolium repens L.). Euphytica 28, 489494.CrossRefGoogle Scholar
Clarkson, D. T. (1991). Root structure and site of ion uptake. In Plant Roots: The Hidden Half (Eds Waisel, Y., Eshel, A. & Kafkafi, U.), pp. 417453. New York: Marcel Dekker, Inc.Google Scholar
Dechassa, N., Schenk, M. K., Claassen, N. & Steingrobe, B. (2003). Phosphorus efficiency of cabbage (Brassica oleraceae L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L.). Plant and Soil 250, 215224.CrossRefGoogle Scholar
Delhaize, E., James, R. A. & Ryan, P. R. (2012). Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soils. New Phytologist 195, 609619.CrossRefGoogle Scholar
Dolan, L. (2001). The role of ethylene in root hair growth in Arabidopsis. Journal of Plant Nutrition and Soil Science 164, 141145.3.0.CO;2-Z>CrossRefGoogle Scholar
Drew, M. C. (1975). Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytologist 75, 479490.CrossRefGoogle Scholar
FAO (2006). Fertilizer Use by Crop. Fertilizer and Plant Nutrition Bulletin 17. Rome: FAO.Google Scholar
FAO-UNESCO (1999). Soil Map of the World, Revised Legend. World Soil Resources Report 60. Rome: FAO.Google Scholar
Föhse, D. & Jungk, A. (1983). Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant and Soil 74, 359368.CrossRefGoogle Scholar
Föhse, D., Claassen, N. & Jungk, A. (1991). Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation–anion balance for phosphorus influx in seven plant species. Plant and Soil 132, 261272.CrossRefGoogle Scholar
Gahoonia, T. S. & Nielsen, N. E. (1998). Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant and Soil 198, 147152.CrossRefGoogle Scholar
Gahoonia, T. S. & Nielsen, N. E. (2004). Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil 262, 5562.CrossRefGoogle Scholar
Gahoonia, T. S., Care, D. & Nielsen, N. E. (1997). Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant and Soil 191, 181188.CrossRefGoogle Scholar
Gahoonia, T. S., Nielsen, N. E. & Lyshede, O. B. (1999). Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant and Soil 211, 269281.CrossRefGoogle Scholar
George, T. S., Brown, L. K., Ramsay, L., White, P. J., Newton, A. C., Bengough, A. G., Russell, J. & Thomas, W. T. B. (2014). Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytologist 203, 195205.CrossRefGoogle ScholarPubMed
Green, R. L., Beard, J. B. & Oprisko, M. J. (1991). Root hairs and root lengths in nine warm-season turfgrass genotypes. Journal of the American Society for Horticultural Science 116, 965969.CrossRefGoogle Scholar
Haling, R. E., Simpson, R. J., Culvenor, R. A., Lambers, H. & Richardson, A. E. (2011). Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance. Plant Cell and Environment 34, 444456.CrossRefGoogle ScholarPubMed
Haling, R. E., Brown, L. K., Bengough, A. G., Young, I. M., Hallett, P. D., White, P. J. & George, T. S. (2013). Root hairs improve root penetration, root–soil contact and phosphorus acquisition in soils of different strength. Journal of Experimental Botany 64, 37113721.CrossRefGoogle ScholarPubMed
Haling, R. E., Brown, L. K., Bengough, A. G., Valentine, T. A., White, P. J., Young, I. M. & George, T. S. (2014). Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. Planta 239, 643651.CrossRefGoogle ScholarPubMed
Hill, J. O., Simpson, R. J., Moore, A. D. & Chapman, D. F. (2006). Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant and Soil 286, 719.CrossRefGoogle Scholar
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173195.CrossRefGoogle Scholar
Hoerl, A. E. & Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 5567.CrossRefGoogle Scholar
Itoh, S. & Barber, S. A. (1983). Phosphorus uptake by six plant species as related to root hairs. Agronomy Journal 75, 457461.CrossRefGoogle Scholar
Jing, J. Y., Zhang, F. S., Rengel, Z. & Shen, J. B. (2012). Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Research 133, 176185.CrossRefGoogle Scholar
Johnston, A. E., Poulton, P. R. & White, R. P. (2013). Plant-available soil phosphorus. Part II: The response of arable crops to Olsen P on a sandy clay loam and a silty clay loam. Soil Use and Management 29, 1221.CrossRefGoogle Scholar
Johnston, A. E., Poulton, P. R., Fixen, P. E. & Curtin, D. (2014). Phosphorus: its efficient use in agriculture. Advances in Agronomy 123, 177228.CrossRefGoogle Scholar
Jungk, A. (2001). Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science 164, 121129.3.0.CO;2-6>CrossRefGoogle Scholar
Krasilnikoff, G., Gahoonia, T. S. & Nielsen, N. E. (2001). Phosphorus uptake from sparingly available soil-P by cowpea (Vigna unguiculata) genotypes. In Integrated Plant Nutrient Management in sub-Saharan Africa: from Concept to Practice (Eds Vanlauwe, B., Diels, J., Sanginga, N. & Merckx, R.), pp. 239250. Wallingford, UK: CABI Publishing.Google Scholar
Lambers, H. Y., Shane, M. W., Cramer, M. D., Pearse, S. J. & Veneklass, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98, 693713.CrossRefGoogle ScholarPubMed
Li, H., Huang, G., Meng, Q., Ma, L., Yuan, L., Wang, F., Zhang, W., Cui, Z., Shen, J., Chen, X., Jiang, R. & Zhang, F. (2011). Integrated soil and plant phosphorus management for crop and environment in China. Plant and Soil 349, 157167.CrossRefGoogle Scholar
Lynch, J. P. & Brown, K. M. (2008). Root strategies for phosphorus acquisition. In The Ecophysiology of Plant-Phosphorus Interactions (Eds White, P. J. & Hammond, J. P.), pp. 83116. Plant Ecophysiology 7. Dordrecht, Netherlands: Springer Science + Business Media B.V.CrossRefGoogle Scholar
Mallarino, A. P. & Blackmer, A. M. (1992). Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agronomy Journal 84, 850856.CrossRefGoogle Scholar
Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd edn.London: Academic Press.Google Scholar
Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X. & Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany 112, 391408.CrossRefGoogle ScholarPubMed
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939:1–19. Washington, DC: Government Printing Office.Google Scholar
Peret, B., Clement, M., Nussaume, L. & Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16, 442450.CrossRefGoogle ScholarPubMed
Poulton, P. R., Johnston, A. E. & White, R. P. (2013). Plant-available soil phosphorus. Part I: The response of winter wheat and spring barley to Olsen P on a silty clay loam. Soil Use and Management 29, 411.CrossRefGoogle Scholar
Pypers, P. (2006). Isotopic approaches to characterize P availability and P acquisition by maize and legumes in highly weathered soils. Ph.D. Dissertation, Katholieke Universiteit Leuven, Flanders, Belgium.Google Scholar
Raghothama, K. G. (2005). Phosphorus and plant nutrition: an overview. In Phosphorus: Agriculture and the Environment (Eds Sims, J. T. & Sharpley, A. N.), pp. 355378. Agronomy Monograph 46. Madison, WI: American Society of Agronomy.Google Scholar
Rook, A. J. & Dhanoa, M. S. (1992). Regression analyses for multicollinear data using Genstat. Genstat Newsletter 27, 3945.Google Scholar
Ryser, P. & Lambers, H. (1995). Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant and Soil 170, 251265.CrossRefGoogle Scholar
SAS Institute Inc. (1999). SAS/STAT User's Guide, Version 8, Cary, NC: SAS Institute Inc.Google Scholar
Schachtman, D. P., Reid, R. J. & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology 116, 447453.CrossRefGoogle ScholarPubMed
Schjørring, J. K. & Nielsen, N. E. (1987). Root length and phosphorus uptake by four barley cultivars grown under moderate deficiency of phosphorus in field experiments. Journal of Plant Nutrition 10, 12891295.CrossRefGoogle Scholar
Schmidt, W. (2001). From faith to fate: ethylene signaling in morphogenetic responses to P and Fe deficiency. Journal of Plant Nutrition and Soil Science 164, 147154.3.0.CO;2-B>CrossRefGoogle Scholar
Shen, J. B., Yuan, L. X., Zhang, J. L., Li, H. G., Bai, Z. H., Chen, X. P., Zhang, W. F. & Zhang, F. S. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology 156, 9971005.CrossRefGoogle ScholarPubMed
Shen, J. B., Li, C. J., Mi, G. H., Li, L., Yuan, L. X., Jiang, R. F. & Zhang, F. S. (2013). Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany 64, 11811192.CrossRefGoogle ScholarPubMed
Steingrobe, B. (2001). Root renewal of sugar beet as a mechanism of P uptake efficiency. Journal of Plant Nutrition and Soil Science 164, 533539.3.0.CO;2-D>CrossRefGoogle Scholar
Teng, W., Deng, Y., Chen, X. P., Xu, X. F., Chen, R. Y., Lv, Y., Zhao, Y. Y., Zhao, X. Q., He, X., Li, B., Tong, Y. P., Zhang, F. S. & Li, Z. S. (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany 64, 14031411.CrossRefGoogle ScholarPubMed
Vandamme, E., Renkens, M., Pypers, P., Smolders, E., Vanlauwe, B. & Merckx, R. (2013). Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol. Plant and Soil 369, 269282.CrossRefGoogle Scholar
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., Price, C. A., Scheible, W., Shane, M. W., White, P. J. & Raven, J. A. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist 195, 306320.CrossRefGoogle ScholarPubMed
Wang, L., Liao, H., Yan, X., Zhuang, B. & Dong, Y. (2004). Genetic variability for root hair traits as related to phosphorus status in soybean. Plant and Soil 261, 7784.CrossRefGoogle Scholar
Yan, X. L., Lynch, J. & Beebe, S. (1995). Genetic variation for phosphorus efficiency of common bean in contrasting soil types. I. Vegetative response. Crop Science 35, 10861093.CrossRefGoogle Scholar
Zhao, F., McGrath, S. P. & Crosland, A. R. (1994). Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Communications in Soil Science and Plant Analysis 25, 407418.CrossRefGoogle Scholar