Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:05:55.928Z Has data issue: false hasContentIssue false

Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China

Published online by Cambridge University Press:  22 December 2008

H. ZHANG
Affiliation:
Key Laboratory of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture of China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China Department of Agriculture, Henan University of Science and Technology, Luoyang471003, P.R. China
M. XU*
Affiliation:
Key Laboratory of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture of China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
F. ZHANG
Affiliation:
Key Laboratory of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture of China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
*
*To whom all correspondence should be addressed. Email: mgxu@caas.ac.cn

Summary

Rice (Oryza sativa L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) are the main crops grown in China. Applying organic manures is an important practice in sustaining soil fertility and agricultural productivity in these cropping systems. The current paper presents the effects of manure application on grain yields in nine long-term experiments that consist of one continuous maize, four wheat–maize and four rice-based cropping systems across a wide range of agro-ecological regions in China. The study shows that regular manure application can increase soil organic carbon (SOC) and grain yield across all the sites. Overall, regular use of manure results in larger increases in SOC in the maize and wheat–maize systems than in the rice-based systems. Application of manure tends to increase the grain yield in the maize and wheat–maize systems during the final years, but increases the grain yield in the rice-based systems during the initial years of the long-term experiments. There is only one site that shows significant improvement in the yield trend in association with the application of manure. The effects of manure on yield trends are probably determined by the initial yield and/or the ‘organic C effect’ that may cause gradual improvements in SOC and soil physical properties.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhandari, A. L., Ladha, J. K., Pathak, H., Padre, A. T., Dawe, D. & Gupta, R. K. (2002). Yield and soil nutrient changes in a long-term rice–wheat rotation in India. Soil Science Society of America Journal 66, 162170.Google Scholar
Black, C. A. (1965). Methods of Soil Analysis. Part 2. Madison, WI: ASA.CrossRefGoogle Scholar
Dawe, D., Dobermann, A., Moya, P., Abdulrachman, S., Singh, B., Lal, P., Li, S. Y., Lin, B., Panaullah, G., Sariam, O., Singh, Y., Swarup, A., Tan, P. S. & Zhen, Q. X. (2000). How widespread are yield declines in long-term rice experiments in Asia? Field Crops Research 66, 175193.CrossRefGoogle Scholar
Dawe, D., Dobermann, A., Ladha, J. K., Yadav, R. L., Lin, B., Gupta, R. K., Lal, P., Panaullah, G., Sariam, O., Singh, Y., Swarup, A. & Zhen, Q. X. (2003). Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crops Research 83, 191213.CrossRefGoogle Scholar
De Costa, W. A. J. M. & Sangakkara, U. R. (2006). Agronomic regeneration of soil fertility in tropical Asian smallholder uplands for sustainable food production. The Journal of Agricultural Science, Cambridge 144, 111133.CrossRefGoogle Scholar
Dick, R. P. (1992). A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems & Environment 40, 2536.CrossRefGoogle Scholar
Duxbury, J. M. (2001). Long-term yield trends in the rice–wheat cropping system: results from experiments in northwest India. Journal of Crop Production 3, 2752.CrossRefGoogle Scholar
Duxbury, J. M., Abrol, I. P., Gupta, R. K. & Bronson, K. F. (2000). Analysis of long-term soil fertility experiments with rice–wheat rotations in South Asia. In Long-term Soil Fertility Experiments with Rice–Wheat Rotations in South Asia. Rice–Wheat Consortium Paper Series No. 6 (Eds Abrol, I. P., Bronson, K. F., Duxbury, J. M. & Gupta, R. K.), pp. 722. New Delhi: Rice–Wheat Consortium for the Indo-Gangetic Plains.Google Scholar
Edmeades, D. C. (2003). The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems 66, 165180.CrossRefGoogle Scholar
Fan, T., Stewart, B. A., Yong, W., Junjie, L. & Guangye, Z. (2005). Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agriculture, Ecosystems & Environment 106, 313329.CrossRefGoogle Scholar
FAO/UNESCO (1988). Soil Map of the World: Revised Legend. Rome: FAO.Google Scholar
Gai, J. (2001). Experiment and Statistical Methods (in Chinese). Beijing: China Agriculture Press.Google Scholar
Gami, S. K., Ladha, J. K., Pathak, H., Shah, M. P., Pasuquin, E., Pandey, S. P., Hobbs, P. R., Joshy, D. & Mishra, R. (2001). Long-term changes in yield and soil fertility in a twenty-year rice–wheat experiment in Nepal. Biology and Fertility of Soils 34, 7378.Google Scholar
Ghosh, P. K., Manna, M. C., Dayal, D. & Wanjari, R. H. (2006). Carbon sequestration potential and sustainable yield index for groundnut- and fallow-based cropping systems. Journal of Agricultural Science, Cambridge 144, 249259.CrossRefGoogle Scholar
Hao, M. D., Fan, J., Wei, X. R., Pen, L. F. & Lai, L. (2005). Effect of fertilization on soil fertility and wheat yield of dryland in the Loess Plateau. Pedosphere 15, 189195.Google Scholar
Jiang, D., Hengsdijk, H., Dai, T. B., De Boer, W., Qi, J. & Cao, W. X. (2006). Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat–maize system in Jiangsu, China. Pedosphere 16, 2532.CrossRefGoogle Scholar
Knudsen, D., Peterson, G. A. & Pratt, P. F. (1982). Lithium, sodium, and potassium. In Methods of Soil Analysis, Part 2, Chemical & Microbiological Properties, 2nd edn (Eds Page, A. L., Miller, R. H. & Keeney, D. R.), pp. 225246. Agronomy Monograph 9. Madison, WI: ASA and SSSA.Google Scholar
Ladha, J. K., Dawe, D., Ventura, T. S., Singh, U., Ventura, W. & Watanabe, I. (2000). Long-term effects of urea and green manure on rice yields and nitrogen balance. Soil Science Society of America Journal 64, 19932001.CrossRefGoogle Scholar
Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A. P., Gami, S. K., Bhandari, A. L., Amin, R., Yadav, C. R., Bhattarai, E. M., Das, S., Aggarwal, H. P., Gupta, R. K. & Hobbs, P. R. (2003). How extensive are yield declines in long-term rice–wheat experiments in Asia? Field Crops Research 81, 159180.CrossRefGoogle Scholar
Leigh, R. A. & Johnston, A. E. (1994). Long-term Experiments in Agricultural and Ecological Sciences. Harpenden, UK: CAB International.Google Scholar
Lu, R. K. (2000). Analytical Methods of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press.Google Scholar
Mando, A., Ouattara, B., Sedogo, M., Stroosnijder, L., Ouattara, K., Brussaard, L. & Vanlauwe, B. (2005). Long-term effect of tillage and manure application on soil organic fractions and crop performance under Sudano-Sahelian conditions. Soil and Tillage Research 80, 95101.CrossRefGoogle Scholar
Murphy, J. & Riley, J. P. (1962). A modified of single solution method for the determination of phosphate in nature water. Analytica Chimica Acta 27, 3136.CrossRefGoogle Scholar
National Soil Survey (1998). Soils of China. Beijing: China Agriculture Press.Google Scholar
Olk, D. C., van Kessel, C. & Bronson, K. F. (2000). Managing soil organic matter in rice and nonrice soils: agronomic questions. In Carbon and Nitrogen Dynamics in Flooded Soils. (Eds Kirk, G. J. D. & Olk, D. C.), pp. 2747. Makati City, Philippines: International Rice Research Institute.Google Scholar
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939. Washington, DC: U.S. Government Printing Office.Google Scholar
Paustian, K., Collins, H. P. & Paul, E. A. (1997). Management controls on soil carbon. In Soil Organic Matter in Temperate Agroecosystems (Eds Paul, E. A., Paustian, K., Elliot, E. T. & Cole, C. V.), pp. 1549. Boca Raton, FL: CRC Press.Google Scholar
Powlson, D. S. & Olk, D. C. (2000). Long-term soil organic matter dynamics. In Carbon and Nitrogen Dynamics in Flooded Soils (Eds Kirk, G. J. D. & Olk, D. C.), pp. 4963. Makati City, Philippines: International Rice Research Institute.Google Scholar
Ram, N. (1998). Effect of continuous fertilizer use on soil fertility and productivity of a Mollisol. In Long-Term Soil Fertility Management through Integrated Plant Nutrient Supply (Eds Swarup, A., Reddy, D. D. & Prasad, R. N.), pp. 229237. Bhopal, India: Indian Institute of Soil Science.Google Scholar
Regmi, A. P., Ladha, J. K., Pathak, H., Pasuquin, E., Bueno, C., Dawe, D., Hobbs, P. R., Joshy, D., Maskey, S. L. & Pandey, S. P. (2002). Yield and soil fertility trends in a 20-year rice-rice-wheat experiment in Nepal. Soil Science Society of America Journal 66, 857867.CrossRefGoogle Scholar
Saleque, M. A., Abedin, M. J., Bhuiyan, N. I., Zaman, S. K. & Panaullah, G. M. (2004). Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crops Research 86, 5365.CrossRefGoogle Scholar
Sarkar, S., Singh, S. R. & Singh, R. P. (2003). The effect of organic and inorganic fertilizers on soil physical condition and the productivity of a rice-lentil cropping sequence in India. Journal of Agricultural Science, Cambridge 140, 419425.CrossRefGoogle Scholar
SPSS Inc. (2001). SPSS 11.0 for Windows. Chicago, IL: SPSS Inc.Google Scholar
Taylor, B. R., Younie, D., Matheson, S., Coutts, M., Mayer, C., Watson, C. A. & Walker, R. L. (2006). Output and sustainability of organic ley/arable crop rotations at two sites in northern Scotland. The Journal of Agricultural Science, Cambridge 144, 435447.CrossRefGoogle Scholar
Timsina, J. & Connor, D. J. (2001). Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crops Research 69, 93132.CrossRefGoogle Scholar
Wang, B. R., Xu, M. G. & Wen, S. L. (2005). Effect of long time fertilizers application on soil characteristics and crop growth in red soil upland. Journal of Soil and Water Conservation 19, 97100.Google Scholar
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37, 2938.CrossRefGoogle Scholar
Xu, M. G., Liang, G. Q. & Zhang, F. D. (2006). Variation of Soil Fertility in China. Beijing, China: Agricultural Science and Technology Press.Google Scholar
Yadav, R. L., Yadav, D. S., Singh, R. M. & Kumar, A. (1998). Long term effects of inorganic fertilizer inputs on crop productivity in a rice–wheat cropping system. Nutrient Cycling in Agroecosystems 51, 193200.CrossRefGoogle Scholar
Yadav, R. L., Dwivedi, B. S. & Pandey, P. S. (2000 a). Rice–wheat cropping system: assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crops Research 65, 1530.CrossRefGoogle Scholar
Yadav, R. L., Dwivedi, B. S., Prasad, K., Tomar, O. K., Shurpali, N. J. & Pandey, P. S. (2000 b). Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers. Field Crops Research 68, 219246.CrossRefGoogle Scholar
Yadvinder, S., Bijay, S., Ladha, J. K., Khind, C. S., Gupta, R. K., Meelu, O. P. & Pasuquin, E. (2004). Long-term effects of organic inputs on yield and soil fertility in the rice–wheat rotation. Soil Science Society of America Journal 68, 845853.CrossRefGoogle Scholar
Yang, S., Li, F., Malhi, S. S., Wang, P., Suo, D. & Wang, J. (2004). Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China. Agronomy Journal 96, 10391049.CrossRefGoogle Scholar
Zhang, H. M., Wang, B. R. & Xu, M. G. (2008). Effects of inorganic fertilizer inputs on grain yields and soil properties in a long-term wheat–corn cropping system in south China. Communications in Soil Science and Plant Analysis 39, 15831599.CrossRefGoogle Scholar