Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:36:58.217Z Has data issue: false hasContentIssue false

Grassland use in mountain bovine systems according to a hierarchy of geographical determinants

Published online by Cambridge University Press:  21 June 2011

F. GARCIA-LAUNAY*
Affiliation:
INRA, UR1213 Herbivores, Theix, F-63122 Saint-Genès-Champanelle, France
C. SIBRA
Affiliation:
Clermont Université, VetAgro Sup, UR 2008·03·102, EPR, BP 10448, F-63000 Clermont-Ferrand, France INRA, USC 2005, F-63370 Lempdes, France
H. MOLÉNAT
Affiliation:
Clermont Université, VetAgro Sup, UR 2008·03·102, EPR, BP 10448, F-63000 Clermont-Ferrand, France INRA, USC 2005, F-63370 Lempdes, France
C. AGABRIEL
Affiliation:
Clermont Université, VetAgro Sup, UR 2008·03·102, EPR, BP 10448, F-63000 Clermont-Ferrand, France INRA, USC 2005, F-63370 Lempdes, France
G. BRUNSCHWIG
Affiliation:
Clermont Université, VetAgro Sup, UR 2008·03·102, EPR, BP 10448, F-63000 Clermont-Ferrand, France INRA, USC 2005, F-63370 Lempdes, France
*
*To whom all correspondence should be addressed. Email: fgarcia@clermont.inra.fr

Summary

Knowledge of the spatio-temporal management of forage production and grazing in grass-based livestock systems is needed to simulate their functioning and then to propose new cutting and grazing practices that will achieve both environmental and economic benefits. The objectives of the present work were to characterize the types of grassland use in mountain bovine systems and relate them to field geographical characteristics to produce a conceptual model of grassland use. This model can be incorporated into a whole beef and/or dairy farm simulator of the impact of practice changes on environmental and productive performances. For this purpose, a survey of 72 farms was conducted in the traditional Salers system in the Massif Central (France). Information was gathered on geographical characteristics and cutting and/or grazing practices on three general groups of fields: cut only, cut and grazed, and grazed only fields. Principal component and hierarchical cluster analyses constructed 15 field use classes that account for the complexity of forage production and grazing management. Geographical determinants of grassland use follow a certain hierarchy: slope and carrying capacity influence the occurrence of cutting, and field area determines the possibility of allocating a cut field to grazing animals and of allocating a field to milked cows. The distance to the cowshed is involved in the allocation to milked or suckler cows and also influences the order of the cutting and grazing sequence. For the same combination of geographical characteristics, two types of grassland use may be observed, highlighting the flexibility of mountain systems. A conceptual model of grassland use is proposed as the basis for field use allocation in a whole farm model. Further investigation will consider the influence of field pattern characteristics on these relationships.

Type
Crops and Soils
Copyright
Copyright © Institut National de la Recherche Agronomique 2011. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agabriel, C., Sibra, C., Journal, C. & Coulon, J. B. (2005). Interest and data analysis of survey in livestock farming: reflection over 15 years of practice. Rencontres autour des Recherches sur les Ruminants 12, 331334.Google Scholar
Agreste (2008). Caractéristiques générales des exploitations, France métropolitaine. Available online at: http://agreste.agriculture.gouv.fr/IMG/pdf/structure2008T1-2.pdf (verified 13 April 2011).Google Scholar
Andrieu, N., Josien, E. & Duru, M. (2007). Relationships between diversity of grassland vegetation, field characteristics and land use managements practices assessed at the farm level. Agriculture, Ecosystems and Environment 120, 359369.CrossRefGoogle Scholar
Baumont, R., Deux, N., Farruggia, A. & Jouven, M. (2008). Simulation of the sensitivity and adaptation of beef cattle farming systems to extreme climatic events based on permanent pasture. Rencontres autour des Recherches sur les Ruminants 15, 209.Google Scholar
Berentsen, P. B. M., Giesen, G. W. J. & Renkema, J. A. (2000). Introduction of seasonal and spatial specification to grass production and grassland use in a dairy farm model. Grass and Forage Science 55, 125137.CrossRefGoogle Scholar
Brunschwig, G., Josien, E. & Bernhard, C. (2006). Contraintes géographiques et modes d'utilisation des parcelles en élevage bovin laitier et allaitant. Fourrages 185, 8395.Google Scholar
Camacho, O. (2004). L'alimentation des troupeaux peut-elle empêcher le boisement spontané des espaces ruraux dans les Alpes du Nord ? PhD thesis, Institut National Agronomique Paris Grignon, France.Google Scholar
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1, 245276.CrossRefGoogle ScholarPubMed
Fleury, Ph., Dubeuf, B. & Jeanin, B. (1996). Forage management in dairy farms: a methodological approach. Agricultural Systems 52, 199212.CrossRefGoogle Scholar
Gaspar, P., Escribano, M., Mesias, F. J., Rodriguez de Ledesma, A. & Pulido, F. (2008). Sheep farms in the Spanish rangelands (dehesas): typologies according to livestock management and economic indicators. Small Ruminant Research 74, 5263.CrossRefGoogle Scholar
Houlbrooke, D. J., Paton, R. J., Littlejohn, R. P. & Morton, J. D. (2011). Land-use intensification in New Zealand: effects on soil properties and pasture production. Journal of Agricultural Science, Cambridge 149, 335348.CrossRefGoogle Scholar
Institut de l'Elevage (2008). Les Chiffres Clés 2008: Productions Bovines Lait & Viande. Supplément à Tendances n°183. Available online at: http://www.inst-elevage.asso.fr/html1/spip.php?article15983 (verified 13 April 2011).Google Scholar
Jacquot, A. L., Baumont, R. & Brunschwig, G. (2009). A modelling approach to evaluate the ability of dairy cows systems in mountain area to balance animal production and sustainable grassland utilizations. In Integrated Research for the Sustainability of Mountain Pastures. 15th Meeting of the FAO-CIHEAM Mountain Pastures Network, Les Diablerets (Switzerland), 7–9 October (Ed. Agroscope Changins-Wädenswil Research Station ACW, Switzerland), pp. 4750. Rome: FAO.Google Scholar
Jouven, M. & Baumont, R. (2008). Simulating grassland utilization in beef suckler systems to investigate the trade-offs between production and floristic diversity. Agricultural Systems 96, 260272.CrossRefGoogle Scholar
Martin, G., Hossard, L., Theau, J. P., Therond, O., Josien, E., Cruz, P., Rellier, J. P., Martin-Clouaire, R. & Duru, M. (2009). Characterizing potential flexibility in grassland use. Application to the French Aubrac area. Agronomy for Sustainable Development 29, 381389.CrossRefGoogle Scholar
Meerburg, B. G., Korevaar, H., Haubenhofer, D. K., Blom-Zandstra, M. & Van Keulen, H. (2009). The changing role of agriculture in Dutch society. Journal of Agricultural Science, Cambridge 147, 511521.CrossRefGoogle Scholar
Morlon, P. & Benoit, M. (1990). Etude méthodologique d'un parcellaire d'exploitation agricole en tant que système. Agronomie 6, 499508.CrossRefGoogle Scholar
Mosnier, C., Agabriel, J. & Lherm, M. (2009). Dynamics of suckler cow farms under stochastic crop yields: a recursive discrete stochastic programming approach. In Proceedings of the Conference on Integrated Assessment of Agriculture and Sustainable Development: Setting the Agenda for Science and Policy (AgSAP 2009), Hotel Zuiderduin, Egmond aan Zee, The Netherlands, 10–12 March 2009 (Eds van Itterson, M., Wolfe, J. & van Laar, G.), pp. 264265. Wageningen, The Netherlands: Wageningen University and Research Centre.Google Scholar
Mottet, A., Ladet, S., Coqué, N. & Gibon, A. (2006). Agricultural land-use change and its drivers in mountain landscapes: a case study in the Pyrenees. Agriculture, Ecosystems and Environment 114, 296310.CrossRefGoogle Scholar
Piepho, H. P. (2000). Multiple treatment comparisons in linear models when the standard error of a difference is not constant. Biometrical Journal 42, 823835.3.0.CO;2-B>CrossRefGoogle Scholar
Rapey, H., Gueringer, A., Gresset, F., Houdart, M., Josien, E. & Bigot, G. (2008). Diversity and adaptability of the spatio-temporal management of grazing farms: first learning from case analysis in Cantal (Auvergne France). Rencontres autour des Recherches sur les Ruminants 15, 155158.Google Scholar
Réseaux d'élevage Auvergne et Lozère (2006). Qualité de l'herbe en fonction de la date de récolte et de l'altitude. In Fiche Référence des Réseaux d'élevage Auvergne et Lozère. Available online at: http://www.cantal.chambagri.fr/refpac/IMG/pdf/Referentiel_2006-2.pdf (verified 13 April 2011).Google Scholar
SAS® (2000). User's Guide, Statistics, version 8 Edition. Cary, NC: SAS Institute Inc.Google Scholar
SPAD (2005). SPAD version 6.0.1, Manuel de Prise en Main. Courbevoie, France: Coheris SPAD.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1995). Biometry: the Principles and Practices of Statistics in Biological Research, pp. 380387. San Francisco: Freeman and Co.Google Scholar
Sorel, L., Viaud, V., Durand, P. & Walter, C. (2010). Modeling spatio-temporal crop allocation patterns by a stochastic decision tree method, considering agronomic driving factors. Agricultural Systems 103, 647655.CrossRefGoogle Scholar
Teissier, J. H. (1979). Relations entre techniques et pratiques. Bulletin INRAP 38, 119.Google Scholar
Thenail, C. & Baudry, J. (2004). Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscape: a case study in northeast Brittany. Agriculture, Ecosystems and Environment 101, 5372.CrossRefGoogle Scholar