Hostname: page-component-68c7f8b79f-pksg9 Total loading time: 0 Render date: 2025-12-17T03:44:44.063Z Has data issue: false hasContentIssue false

Forage mass, nutritional value and decomposition dynamics of forages intercropped with maize in an integrated system in a tropical climate

Published online by Cambridge University Press:  28 November 2025

Gustavo Henrique Silva Camargos*
Affiliation:
Animal Science Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Roberto Guimarães Júnior
Affiliation:
Brazilian Agricultural Research Corporation – Embrapa Cerrados, Planaltina, DF, Brazil
Allan Kardec Braga Ramos
Affiliation:
Brazilian Agricultural Research Corporation – Embrapa Cerrados, Planaltina, DF, Brazil
Marcelo Ayres Carvalho
Affiliation:
Brazilian Agricultural Research Corporation – Embrapa Cerrados, Planaltina, DF, Brazil
Lúcio Carlos Gonçalves
Affiliation:
Animal Science Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Alan Figueiredo de Oliveira
Affiliation:
Department of Veterinary Medicine, Institute of Biological and Health Sciences, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
Ângela Maria Quintão Lana
Affiliation:
Animal Science Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
*
Corresponding author: Gustavo Henrique Silva Camargos; Email: gustavohenrique641@gmail.com

Abstract

The selection of suitable forages for intercropping with annual crops is a key factor in enhancing the resilience and sustainability of integrated crop-livestock systems (ICLS). This study aimed to evaluate the forage mass, nutritional value, and biomass decomposition dynamics of forages intercropped with maize in an integrated system under tropical conditions. The experiment was conducted in a randomized complete block design with a split-plot arrangement and four replicates per treatment. Maize was intercropped with various grasses in 2022/23, while soybean was grown on the grass residue in 2023/24. The ‘R86’ and ‘254-1’ genotypes increased their biomass by 116% from the first to the third harvest, while ‘BRS Integra’ showed a 52.3% reduction, and ‘BRS Sarandi’ remained stable at 3,442 kg dry matter (DM)/ha. The hybrid ‘1242-10’ presented 115 g crude protein, 527 g neutral detergent fibre, and 677 g organic matter digestibility/kg DM. Biomass from ‘254-1’ released 44.0, 7.53, and 46.1 kg/ha of nitrogen, diphosphorus pentoxide and potassium oxide, respectively. Genotypes ‘R86’, ‘254-1’ and ‘BRS Sarandi’ can be used for intercropping with maize in soybean-based ICLS. This is likely the first study to investigate the use of recently released, genetically improved forage genotypes, such as ‘BRS Integra’ and ‘BRS Sarandi’, in an ICLS in the Cerrado biome.

Information

Type
Integrated Crop-Livestock Systems Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvares, CA, Stape, JL, Sentelhas, PC, de Moraes, GJL and Sparovek, G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728. https://doi.org/10.1127/0941-2948/2013/0507 Google Scholar
Andrade, CAO, Borghi, E, Bortolon, L, Bortolon, ESO, Camargo, FP, Avanzi, JC, Guarda, VDA, Cunha, MK, Silva, RR and Fidelis, RR (2020) Forage production and bromatological composition of forage species intercropped with soybean. Journal of Agricultural Science 12, 8494. https://doi.org/10.5539/jas.v12n1p84 Google Scholar
AOAC (1996) Official Methods of Analysis, 16th Edn. Method 930.15. Gaithersburg, MD, USA: Association of Official Analytical Chemists.Google Scholar
AOAC (2005) Official Methods of Analysis, 18th Edn. Method 2001.11. Gaithersburg, MD, USA: Association of Official Analytical Chemists.Google Scholar
AOAC (2006) Official Methods of Analysis, 18th Edn. Method 942.05. Gaithersburg, MD, USA: Association of Official Analytical Chemists.Google Scholar
Baptistella, JLC, de Andrade, SAL, Favarin, JL and Mazzafera, P (2020) Urochloa in tropical agroecosystems. Frontiers in Sustainable Food Systems 4, 117. https://doi.org/10.3389/fsufs.2020.00119 Google Scholar
Braga, GJ, Ramos, AKB, Carvalho, MA, Fonseca, CEL and Karia, CT (2024) Canopy characteristics of gamba grass cultivars and their effects on the weight gain of beef cattle under grazing. Agronomy 14, 112. https://doi.org/10.3390/agronomy14102293 Google Scholar
Buchelt, AC, Teixeira, GCM, Oliveira, KS, Rocha, AMS, de Mello, PR and Caione, G (2020) Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulphur deficiency. Journal of Soil Science and Plant Nutrition 20, 15321548. https://doi.org/10.1007/s42729-020-00245-7 Google Scholar
Carvalho, MA, Macedo, MCM and Zimmer, AH (2021) BRS Sarandi: Nova cultivar de Andropogon gayanus para pastagens. Circular Técnica 52, Embrapa Cerrados, Planaltina.Google Scholar
Costa, RRGF, Severiano, EDC, Costa, KADP, Souza, WF, Brandstetter, EV and Castro, WA (2017) Nutrients cycling and accumulation in Pearl Millet and Paiaguas Palisadegrass biomass in different forage systems and sowing periods. Scientia Agraria 18, 166178. https://doi.org/10.5380/rsa.v18i4.51955 Google Scholar
da Silva, LM, Habermann, E, Costa, KAP, Costa, AC, Silva, JAG, Severiano, EC, Vilela, L, Silva, FG, da Silva, AG, Marques, BS, Rodrigues, F and Martinez, CA (2025) Integrated systems improve soil microclimate, soybean photosynthesis and growth. Frontiers in Plant Science 15, 117. https://doi.org/10.3389/fpls.2024.1484315 Google Scholar
Davi, JEA, Nogueira, BKA, Gasques, LR, Dalla Côrt, AS, Camargo, TA, Pacheco, LP, Silva, LS and Souza, ED (2022) Diversified production systems in sandy soils of the Brazilian Cerrado: nutrient dynamics and soybean productivity. Journal of Plant Nutrition 46, 16501667. https://doi.org/10.1080/01904167.2022.2093744 Google Scholar
de Carvalho, AM, Coelho, MC, Dantas, RA, Fonseca, OP, Guimarães Júnior, R and Figueiredo, CC (2012) Chemical composition of cover plants and its effect on maize yield in no-tillage systems in the Brazilian savanna. Crop and Pasture Science 63, 10751081. https://doi.org/10.1071/cp12272 Google Scholar
Detmann, E, Sousa, LCO, Lima, NSA and Franco, MO (2024) What is the impact of neutral detergent fibre digestibility on productive performance of beef cattle fed tropical forages?. Livestock Science 290, 113. https://doi.org/10.1016/j.livsci.2024.105608 Google Scholar
Detmann, E, Souza, MA, Valadares Filho, SC, Queiroz, AC, Berchielli, TT, Saliba, EOS and Azevedo, JAG (2021) Métodos Para Análise de Alimentos. Viçosa, Minas Gerais: Universidade Federal de Viçosa.Google Scholar
Dias, MBC, Costa, KAP, Severiano, EC, Bilego, UO, Neto, AEF, Almeida, DP, Brand, SC and Vilela, L (2020) Brachiaria and Panicum maximum in an integrated crop–livestock system and a second-crop maize system in succession with soybean. The Journal of Agricultural Science 158, 206217. https://doi.org/10.1017/s0021859620000532 Google Scholar
Dias, MBC, Costa, KAP, Severiano, EC, Bilego, UO, Vilela, L, de Souza, WF, de Oliveira, IP and da Silva, ACG (2021) Cattle performance with Brachiaria and Panicum maximum forages in an integrated crop-livestock system. African Journal of Range & Forage Science 39, 230243. https://doi.org/10.2989/10220119.2021.1901311 Google Scholar
dos Santos, AMG, Dubeux Junior, JCB, dos Santos, MVF, Lira, MA, Apolinário, VXO, Costa, SBM, Coêlho, DL, Peixôto, TVFR and da Silva, ERS (2020) Animal performance in grass monoculture or silvopastures using tree legumes. Agroforestry Systems 94, 615626. https://doi.org/10.1007/s10457-019-00431-2 Google Scholar
Euclides, VPB, Nantes, NN, Montagner, DB, Araújo, AR, Barbosa, RA, Zimmer, AH and Valle, CB (2018) Beef cattle performance in response to Ipyporã and Marandu brachiariagrass cultivars under rotational stocking management. Revista Brasileira de Zootecnia 47, 110. https://doi.org/10.1590/rbz4720180018 Google Scholar
Fancelli, AL (2017) Ecofisiologia, fenologia e implicações básicas de manejo. In Bórem, A, Galvão, JCC and Pimentel, MA (eds.), Milho do Plantio à Colheita. Viçosa: Universidade Federal de Viçosa, pp. 4975.Google Scholar
Franchini, JC, Balbinot Junior, AA, Debiasi, H and Procópio, SO (2014) Intercropping of soybean cultivars with Urochloa . Pesquisa Agropecuária Tropical 44, 119126. https://doi.org/10.1590/s1983-40632014000200007 Google Scholar
Freschet, GT, Cornwell, WK, Wardle, DA, Elumeeva, TG, Liu, W, Jackson, BG, Onipchenko, VG, Soudzilovskaia, NA, Tao, J and Cornelissen, JHC (2013) Liking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology 101, 943952. https://doi.org/10.1111/1365-2745.12092 Google Scholar
Grzyb, A, Wolna-Maruwka, A and Niewiadomska, A (2020) Environmental factors affecting the mineralization of crop residues. Agronomy 10, 118. https://doi.org/10.3390/agronomy10121951 Google Scholar
Guarnieri, A, Costa, KAP, Severiano, EC, Silva, AG, Oliveira, SS and Santos, CB (2019) Agronomic and productive characteristics of maize and Paiaguas palisadegrass in integrated production systems. Semina: Ciências Agrárias 40, 11851198. https://doi.org/10.5433/1679-0359.2019v40n3p1185 Google Scholar
Holden, LA (1999) Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of Dairy Science 82, 17911794. https://doi.org/10.3168/jds.s0022-0302(99)75409-3 Google Scholar
Irving, L (2015) Carbon assimilation, biomass partitioning and productivity in grasses. Agriculture 5, 11161134. https://doi.org/10.3390/agriculture5041116 Google Scholar
Leal, VN, Paim, TP, de Castro, DS, Fernandes, PB, dos Santos, LP, Souza, BR, Bueno, MSL, Valicheski, RR, Gonçalves, LF, Claudio, FL and Alves, EM (2024) Grazing effect on different forage species in yield of soybean-pasture succession. Journal of Agriculture and Food Research 15, 110. https://doi.org/10.1016/j.jafr.2024.101053 Google Scholar
Lima, MA, Paciullo, DSC, Morenz, MJF, Gomide, CAM, Rodrigues, RAR and Chizzotti, FHM (2019) Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long-term silvopastoral system. Grass and Forage Science 74, 160170. https://doi.org/10.1111/gfs.12395 Google Scholar
Machado, LAZ, Cecato, U, Comunello, E, Concenço, G and Ceccon, G (2017) Establishment of perennial forages intercropped with soybean for integrated crop-livestock systems. Pesquisa Agropecuária Brasileira 52, 521529. https://doi.org/10.1590/s0100-204x2017000700006 Google Scholar
Machado, VD, da Fonseca, DM, Lima, MA, Martuscello, JA, Paciullo, DSC and Chizzotti, FHM (2020) Grazing management strategies for Urochloa decumbens (Stapf) R. Webster in a silvopastoral system under rotational stocking. Grass and Forage Science 75, 266278. https://doi.org/10.1111/gfs.12491 Google Scholar
Martuscello, JA, Rios, JF, Ferreira, MR, Assis, JA, Braz, TGS and Cunha, DNFV (2019) Produção e morfogênese de capim BRS Tamani sob diferentes doses de nitrogênio e intensidades de desfolhação. Boletim de Indústria Animal 76, 110. https://doi.org/10.17523/bia.2019.v76.e1441 Google Scholar
Muniz, MP, Costa, KAP, Severiano, EC, Bilego, UO, Almeida, DP, Furtini Neto, AE, Vilela, L, Lana, MA, Leandro, WM and Dias, MBC (2021) Soybean yield in integrated crop–livestock system in comparison to soybean–maize succession system. The Journal of Agricultural Science 159, 188198. https://doi.org/10.1017/s0021859621000393 Google Scholar
Nasem (2021) Nutrient Requirements of Dairy Cattle. Washington, USA: National Academies Press. https://doi.org/10.17226/25806 Google Scholar
Oliveira, DMS, Santos, RS, Chizzotti, FHM, Bretas, IL, Franco, ALC, Lima, RP, Freitas, DAF, Cherubin, MR and Cerri, CEP (2024) Crop, livestock, and forestry integration to reconcile soil health, food production, and climate change mitigation in the Brazilian Cerrado: A review. Geoderma Regional 37, 111. https://doi.org/10.1016/j.geodrs.2024.e00796 Google Scholar
Oliveira, S, Costa, KA, Severiano, E, da Silva, A, Dias, M, Oliveira, G and Costa, JV (2020) Performance of Grain Sorghum and Forage of the Genus Brachiaria in Integrated Agricultural Production Systems. Agronomy 10, 113. https://doi.org/10.3390/agronomy10111714 Google Scholar
Oliveira Junior, A, Prochnow, LI and Klepker, D (2020) Fertilidade do solo e avaliação do estado nutricional da soja. In Seixas, CDS, Neumaier, N, Balbinot Junior, AA and Leite, RMVBC (eds.), Tecnologias de Produção de Soja. Londrina, Paraná: Embrapa Soja, pp. 133184.Google Scholar
Paul, EA and Clark, FE (1989) Soil Microbiology and Biochemistry. San Diego, USA: Academic Press. https://doi.org/10.1016/c2009-0-02814-1 Google Scholar
Peterson, CA, Deiss, L and Gaudin, ACM (2020) Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: A meta-analysis. PLoS One 15, 125. https://doi.org/10.1371/journal.pone.0231840 Google Scholar
R Core Team (2024) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ Google Scholar
Robertson, JB and Van Soest, PJ (1981) The detergent system of analysis. In James, WPT and Theander, O (eds.), The analysis of dietary fibre in food Chapter 9. Marcel Dekker, New York. pp. 123158.Google Scholar
Rodrigues, PR, Paciullo, DSC, Soares, NA, Gomide, CAM, Morenz, MJF, Lopes, FCF, Sobrinho, FS and Lana, ÂMQ (2023) Productive traits and nutritional value of Urochloa ruziziensis submitted to different planting densities and defoliation intensities. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 75, 10051015. https://doi.org/10.1590/1678-4162-12976 Google Scholar
Santos, FC, Albuquerque Filho, MR, Vilela, L, Ferreira, GB, Carvalho, MCS and Viana, JHM (2014) Decomposição e liberação de macronutrientes da palhada de milho e Braquiária, sob integração lavoura-pecuária no cerrado baiano. Revista Brasileira Ciência do Solo 38, 18551861. https://doi.org/10.1590/s0100-06832014000600020 Google Scholar
Santos, HP, Fontaneli, RS, Spera, ST and Maldaner, GL (2013) Rendimento de grãos de soja em diferentes sistemas de produção integração lavoura-pecuária. Agraria 8, 4956. https://doi.org/10.5039/agraria.v8i1a2077 Google Scholar
Silva, JAG, de Pinho, KAC, Severiano, EC, da Silva, AG, Vilela, L, Leandro, WM, Muniz, MP, da Silva, LM, Magalhães, KTM and Barros, VM (2024) Efficiency of Desiccation, Decomposition and Release of Nutrients in the Biomass of Forage Plants of the Genus Brachiaria After Intercropping with Sorghum in Integrated Systems for Soybean Productivity. Communications in Soil Science and Plant Analysis 55, 16441662. https://doi.org/10.1080/00103624.2024.2323076 Google Scholar
Silva, LS, Laroca, JVS, Coelho, AP, Gonçalves, EC, Gomes, RP, Pacheco, LP, Carvalho, PCF, Pires, GC, Oliveira, RL, Souza, JMA, Freitas, CM, Cabral, CEA, Wruck, FJ and Souza, ED (2022) Does grass-legume intercropping change soil quality and grain yield in integrated crop-livestock systems? Applied Soil Ecology 170, 110. https://doi.org/10.1016/j.apsoil.2021.104257 Google Scholar
Soares, AB, Sartor, LR, Adami, PF, Varella, AC, Fonseca, L and Mezzalira, JC (2009) Influência da luminosidade no comportamento de onze espécies forrageiras perenes de verão. Revista Brasileira de Zootecnia 38, 443451. https://doi.org/10.1590/s1516-35982009000300007 Google Scholar
Sousa, BML, do Nascimento Júnior, D, da Silva, SC, Monteiro, HCF, Rodrigues, CS, da Fonseca, DM, da Silveira, MCT and Sbrissia, AF (2010) Morphogenetic and structural characteristics of andropogon grass submitted to different cutting heights. Revista Brasileira de Zootecnia 39, 21412147. https://doi.org/10.1590/s1516-35982010001000006 Google Scholar
Sousa, DMG, Lobato, E and Rein, TA (2004) Adubação com fósforo. In Sousa, DMG and Lobato, E (eds.), Cerrado: correção do solo e adubação. Embrapa Informação Tecnológica, Brasília. pp. 147167.Google Scholar
Sousa, DMG, Nunes, RS, Rein, TA and Santos Júnior, JDG (2016) Manejo da adubação fosfatada para culturas anuais no Cerrado. Circular Técnica 33. Embrapa Cerrados, Planaltina.Google Scholar
Tanaka, KS, Crusciol, CAC, Soratto, RP, Momesso, L, Costa, CHM, Franzluebbers, AJ, Oliveira Junior, A and Calonego, JC (2019) Nutrients released by Urochloa cover crops prior to soybean. Nutrient Cycling in Agroecosystems 113, 267281. https://doi.org/10.1007/s10705-019-09980-5 Google Scholar
Thomas, RJ and Asakawa, NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biology and Biochemistry 25, 13511361. https://doi.org/10.1016/0038-0717(93)90050-l Google Scholar
Tilley, JMA and Terry, RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18, 104111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x Google Scholar
Valadares-Filho, SC, Saraiva, DT, Benedeti, PDB, Silva, FAS and Chizzotti, ML (2023) Exigências nutricionais de zebuínos puros e cruzados – BR-Corte, 4th Edn. Suprema: Visconde do Rio Branco.Google Scholar
Van Soest, P J (1994) Nutritional Ecology of the Ruminant, 2th Edn. Cornell University Press, New York.Google Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for Dietary Fibre, Neutral Detergent Fibre, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74, 35833597. https://doi.org/10.3168/jds.s0022-0302(91)78551-2 Google Scholar
Walela, C, Daniel, H, Wilson, B, Lockwood, P, Cowie, A and Harden, S (2014) The initial lignin: nitrogen ratio of litter from above and below ground sources strongly and negatively influenced decay rates of slowly decomposing litter carbon pools. Soil Biology & Biochemistry 77, 268275. https://doi.org/10.1016/j.soilbio.2014.06.013 Google Scholar
Wider, RK and Lang, GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63, 16361642. https://doi.org/10.2307/1940104 Google Scholar
World reference base for soil resources - WRBS (2006). A Framework for International Classification, Correlation and Communication. Rome: Food and Agriculture Organization of the United Nations. Available at https://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (accessed 8 January 2025).Google Scholar