Hostname: page-component-76c49bb84f-lvxqv Total loading time: 0 Render date: 2025-07-04T19:45:13.891Z Has data issue: false hasContentIssue false

Employing direct-fed microbial and hydrolysed yeast to modulate in vitro ruminal fermentation parameters of medium- and low-quality forages

Published online by Cambridge University Press:  02 July 2025

Fernanda Rigon
Affiliation:
Department of Animal Science, São Paulo State University Júlio de Mesquita Filho, UNESP, Jaboticabal, SP, Brazil
Amanda R. Cagliari
Affiliation:
Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil
Elaine Magnani
Affiliation:
Beef Cattle Research Center, Instituto de Zootecnia, Sertãozinho, SP, Brazil
Marcos Inacio Marcondes
Affiliation:
Department of Animal Sciences, Washington State University, Pullman, DC, USA William H. Miner Agricultural Research Institute, Chazy, NY, USA
Danilo Grandini
Affiliation:
Phibro Animal Health Corporation, Campinas, SP, Brazil
Brooke Humphrey
Affiliation:
Phibro Animal Health Corporation, Teaneck, NJ, USA
Pedro Del Bianco Benedeti
Affiliation:
Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil
Flavio Dutra Resende
Affiliation:
Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil Department of Animal Science, APTA – Agência Paulista de Tecnologia dos Agronegócios, Colina, SP, Brazil
Gustavo Rezende Siqueira
Affiliation:
Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil Department of Animal Science, APTA – Agência Paulista de Tecnologia dos Agronegócios, Colina, SP, Brazil
Renata Helena Branco
Affiliation:
Beef Cattle Research Center, Instituto de Zootecnia, Sertãozinho, SP, Brazil
Eduardo Marostegan Paula*
Affiliation:
Beef Cattle Research Center, Instituto de Zootecnia, Sertãozinho, SP, Brazil
*
Corresponding author: Eduardo Marostegan Paula; Email: e.marostegandepaula@colostate.edu

Abstract

This study evaluated the effects of combining Bacillus species with hydrolysed and inactive Torula yeast on rumen fermentation of tropical forages in vitro. Exp. 1 assessed different combinations of direct-fed microbials (DFM) and hydrolysed/inactive yeast on the ruminal fermentation of Urochloa brizantha hay in a randomised block design (3×3 factorial scheme). Treatments included: 1) Negative control, no DFM inclusion (NC); 2) B. subtilis and B. licheniformis (SL); 3) B. subtilis, B. licheniformis, B. amyloliquefaciens and B. coagulans (SLAC); 4) Hydrolysed Torula yeast (HY); 5) dry inactive Torula yeast (IY); 6) B. subtilis, B. licheniformis and dry inactive Torula yeast (SL+IY); 7) B. subtilis, B. licheniformis and hydrolysed Torula yeast (SL+HY); 8) B. subtilis, B. licheniformis, B. amyloliquefaciens, B. coagulans and dry inactive Torula yeast (SLAC+IY) and 9) B. subtilis, B. licheniformis, B. amyloliquefaciens, B. coagulans and hydrolysed Torula yeast (SLAC+HY). Bacillus and yeast interaction affected the total short-chain fatty acids (SCFA) and SCFA profile. In treatments without Bacillus, IY resulted in higher isovalerate compared to treatments without yeast (NC). The no yeast treatment also had lower isovalerate concentration than other treatments (HY, IY). Exp. 2 and Exp. 3 evaluated NC, SL, SLAC, SL+HY and SLAC+IY plus SLAC+HY in low- and medium-quality forage. For low-quality forage, SLAC+IY + SLAC+HY had the highest NH3-N concentration, while SL+HY yielded the highest total SCFA. In medium-quality forage, SL+HY showed the highest total SCFA. The combination of Bacillus species and HY may enhance total SCFA and NH3-N in the rumen, improving nutrient utilisation in grazing beef cattle.

Information

Type
Animal Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Current address: AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA

References

Adesogan, AT, Arriola, KG, Jiang, Y, Oyebade, A, Paula, EM, Pech-Cervantes, AA, Romero, JJ, Ferraretto, LF and Vyas, D (2019) Symposium review: technologies for improving fibre utilization. Journal of Dairy Science 102, 57265755.10.3168/jds.2018-15334CrossRefGoogle Scholar
Allen, MS (1991) Carbohydrate nutrition. The Veterinary Clinics of North America. Food Animal Practice 7, 327340.10.1016/S0749-0720(15)30800-8CrossRefGoogle ScholarPubMed
Association Official of Analytical Chemists (2006) Official Methods of Analysis of AOAC International, 18a Edn. Gaithersburg M.D: AOAC.Google Scholar
Baker, LM, Kraft, J, Karnezos, TP and Greenwood, SL (2022) Review: the effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Animal Feed Science and Technology 294, 115476.10.1016/j.anifeedsci.2022.115476CrossRefGoogle Scholar
Ban, Y and Guan, LL (2021) Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of Animal Science and Biotechnology 12, 109.10.1186/s40104-021-00630-xCrossRefGoogle ScholarPubMed
Batista, ED, Detmann, E, Gomes, DI, Rufino, LMA, Paulino, MF, Valadares Filho, SC, Franco, MO, Sampaio, CB and Reis, WLS (2017) Effect of protein supplementation in the rumen, abomasum, or both on intake, digestibility, and nitrogen utilisation in cattle fed high-quality tropical forage. Animal Production Science 57, 19932000. doi:10.1071/AN15736.CrossRefGoogle Scholar
Batista, ED, Detmann, E, Titgemeyer, EC, Filho, SCV, Valadares, RFD, Prates, LL, Rennó, LN and Paulino, MF (2016) Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in nellore cattle fed low-quality tropical forage. Journal of Animal Science 94, 201216. doi:10.2527/jas.2015-9493.CrossRefGoogle ScholarPubMed
Bayer, EA, Chanzy, H, Lamed, R and Shoham, Y (1998) Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology 8, 548557.10.1016/S0959-440X(98)80143-7CrossRefGoogle ScholarPubMed
Benedeti, PDB, Fonseca, MA, Shenkoru, T, Marcondes, MI, Paula, EM, Silva, LG and Faciola, AP (2018) Does partial replacement of corn with glycerin in beef cattle diets affect in vitro ruminal fermentation, gas production kinetic, and enteric greenhouse gas emissions? PLOS ONE 13, e0199577.10.1371/journal.pone.0199577CrossRefGoogle ScholarPubMed
Calsamiglia, S, Ferret, A and Devant, M (2002) Effects of pH and pH fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system. Journal of Dairy Science 85, 574579.10.3168/jds.S0022-0302(02)74111-8CrossRefGoogle ScholarPubMed
Cappellozza, BI, Joergensen, JN, Copani, G, Bryan, KA, Fantinati, P, Bodin, JC, Khahi, MM, Ninodeguzman, C, Arriola, KG, Lima, LO, Farooq, S and Vyas, D (2023) Evaluation of a Bacillus-based direct-fed microbial probiotic on in vitro rumen gas production and nutrient digestibility of different feedstuffs and total mixed rations. Translational Animal Science 7, txad044.10.1093/tas/txad044CrossRefGoogle ScholarPubMed
Carvalho, VV, Paulino, MF, Detmann, E, Chizzotti, ML, Martins, LS, Silva, AG, Lopes, SA and Moura, FH (2017) Effects of supplements containing different additives on nutritional and productive performance of beef cattle grazing tropical grass. Tropical Animal Health and Production 49, 983988.10.1007/s11250-017-1286-8CrossRefGoogle ScholarPubMed
Casagranda, YG, Wiśniewska-Paluszak, J, Paluszak, G, Mores, GV, Moro, LD, Malafaia, GC, Azevedo, DB and Zhang, D (2023) Emergent research themes on sustainability in the beef cattle industry in Brazil: an integrative literature review. Sustainability 15, 4670.10.3390/su15054670CrossRefGoogle Scholar
Chaney, AL and Marbach, EP (1962) Modified reagents for determination of urea and ammonia. Clinical Chemistry 8, 130132.10.1093/clinchem/8.2.130CrossRefGoogle ScholarPubMed
Cheng, Y, Zhang, J, Ren, W, Zhang, L and Xu, X (2023) Response of a new rumen-derived Bacillus licheniformis to different carbon sources. Frontiers in Microbiology 14, 1238767.10.3389/fmicb.2023.1238767CrossRefGoogle ScholarPubMed
Cooke, RF, Daigle, CL, Moriel, P, Smith, SB, Tedeschi, LO and Vendramini, JMB (2020) Board invited review—cattle adapted to tropical and subtropical environments (I): social, nutritional, and carcass quality considerations. Journal of Animal Science 98, skaa014.10.1093/jas/skaa014CrossRefGoogle Scholar
Costa, CM, Difante, GS, Costa, ABG, Gurgel, ALC, Ferreira, MA and Santos, GT (2021) Grazing intensity as a management strategy in tropical grasses for beef cattle production: a meta-analysis. Animal 15, 100192.10.1016/j.animal.2021.100192CrossRefGoogle ScholarPubMed
Detmann, E, Valente, ÉEL, Batista, ED and Huhtanen, P (2014) An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livestock Science 162, 141153.10.1016/j.livsci.2014.01.029CrossRefGoogle Scholar
Firkins, JL and Mitchell, KE (2023) Invited review: rumen modifiers in today’s dairy rations. Journal of Dairy Science 106, 30533071.10.3168/jds.2022-22644CrossRefGoogle ScholarPubMed
Higgs, RJ, Chase, LE, Ross, DA and Van Amburgh, ME (2015) Updating the cornell net carbohydrate and protein system feed library and analyzing model sensitivity to feed inputs. Journal of Dairy Science 98, 63406360.10.3168/jds.2015-9379CrossRefGoogle ScholarPubMed
Hristov, AN, Lee, C, Hristova, R, Huhtanen, P and Firkins, JL (2012) A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data. Journal of Dairy Science 95, 52995307.10.3168/jds.2012-5533CrossRefGoogle ScholarPubMed
Hubbart, JA, Blake, N, Holásková, I, Mata Padrino, D, Walker, M and Wilson, M (2023) Challenges in sustainable beef cattle production: a subset of needed advancements. Challenges 14, 14.10.3390/challe14010014CrossRefGoogle Scholar
Jia, P, Dong, L, Tu, Y and Diao, Q (2023) Bacillus subtilis and Macleaya cordata extract regulate the rumen microbiota associated with enteric methane emission in dairy cows. Microbiome 11, 229.10.1186/s40168-023-01654-3CrossRefGoogle ScholarPubMed
Jouany, JP (2006) Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science 96, 250264.10.1016/j.anireprosci.2006.08.005CrossRefGoogle ScholarPubMed
Leeper, A, Ekmay, R, Knobloch, S, Skírnisdóttir, S, Varunjikar, M, Dubois, M, Smárason, , Árnason, J, Koppe, W and Benhaïm, D (2022) Torula yeast in the diet of Atlantic salmon Salmo salar and the impact on growth performance and gut microbiome. Scientific Reports 12, 567.10.1038/s41598-021-04413-2CrossRefGoogle ScholarPubMed
Leventini, MW, Hunt, CW, Roffler, RE and Casebolt, DG (1990) Effect of dietary level of barley-based supplements and ruminal buffer on digestion and growth by beef cattle. Journal of Animal Science 68, 43344344.10.2527/1990.68124334xCrossRefGoogle ScholarPubMed
Lopez, AM, Sarturi, JO, Johnson, BJ, Woerner, DR, Henry, DD, Ciriaco, FM, Silva, KGS and Rush, CJ (2024) Effects of bacterial direct-fed microbial combinations on beef cattle growth performance, feeding behavior, nutrient digestibility, ruminal morphology, and carcass characteristics. Journal of Animal Science 102, skae004.10.1093/jas/skae004CrossRefGoogle ScholarPubMed
Luise, D, Bosi, P, Raff, L, Amatucci, L, Virdis, S and Trevisi, P (2022) Bacillus spp. probiotic strains as a potential tool for limiting the use of antibiotics, and improving the growth and health of pigs and chickens. Frontiers in Microbiology 13, 801827.10.3389/fmicb.2022.801827CrossRefGoogle ScholarPubMed
McAllister, TA, Beauchemin, KA, Alazzeh, AY, Baah, J, Teather, RM and Stanford, K (2011) Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Canadian Journal of Animal Science 91, 193211.10.4141/cjas10047CrossRefGoogle Scholar
Menke, HH and Steingass, H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.Google Scholar
Mombach, MA, da Silva Cabral, L, Lima, LR, Ferreira, DC, Pedreira, BC and Pereira, DH (2021) Association of ionophores, yeast, and bacterial probiotics alters the abundance of ruminal microbial species of pasture intensively finished beef cattle. Tropical Animal Health and Production 53, 172.10.1007/s11250-021-02617-2CrossRefGoogle ScholarPubMed
NASEM (2016) Nutrient Requirements of Beef Cattle. Washington, DC: National Academy Press.Google Scholar
NRC (2001). Requirements of Dairy Cattle Seventh Revised Edition. Washington, DC: The National Academies Press.Google Scholar
Owens, F and Goetsch, A (1988) Ruminal Fermentation. In Church, DC (ed.), The Ruminant Animal Digestive Physioly and Metabolism. Englewood Cliffs, NJ: Prentice-Hall, pp. 145171.Google Scholar
Owens, FN and Basalan, M (2016) Ruminal Fermentation. In Rumenology. Cham: Springer, pp. 1314.Google Scholar
Oyebade, AO, Taiwo, GA, Idowu, M, Taylor, S, Queiroz, O, Adesogan, AT, Vyas, D and Ogunade, IM (2023) Effects of direct-fed microbial supplement on ruminal and plasma metabolome of early-lactation dairy cows: untargeted metabolomics approach. Journal of Dairy Science 107, 25562571.10.3168/jds.2023-23876CrossRefGoogle ScholarPubMed
Pan, L, Harper, K, Queiroz, O, Copani, G and Cappellozza, BI (2022) Effects of a Bacillus-based direct-fed microbial on in vitro nutrient digestibility of forage and high-starch concentrate substrates. Translational Animal Science 6, txac067.10.1093/tas/txac067CrossRefGoogle ScholarPubMed
Parra, MC, Costa, DFA, Palma, ASV, Camargo, KDV, Lima, LO, Harper, KJ, Meale, SJ and Silva, LFP (2021) The use of live yeast to increase intake and performance of cattle receiving low-quality tropical forages. Journal of Animal Science 99, skab017.10.1093/jas/skab017CrossRefGoogle ScholarPubMed
Pell, AN and Schofield, P (1993) Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science 76, 10631073.10.3168/jds.S0022-0302(93)77435-4CrossRefGoogle ScholarPubMed
Sarmikasoglou, E, Sumadong, P, Dagaew, G, Johnson, ML, Vinyard, JR, Salas-Solis, G, Siregar, M and Faciola, AP (2024) Effects of Bacillus subtilis on in vitro ruminal fermentation and methane production. Translational Animal Science 8, txae054.10.1093/tas/txae054CrossRefGoogle ScholarPubMed
Scholz Berça, A, Prates Romanzini, E, Da Silva Cardoso, A, Eduardo Ferreira, L, Pastori D’aurea, A, Bertelli Fernandes, L and Andrade Reis, R (2022) Advances in pasture management and animal nutrition to optimize beef cattle production in grazing systems. In Animal Feed Science and Nutrition - Production, Health and Environment. London: IntechOpen Limited.Google Scholar
Shi, C, Zhang, Y, Lu, Z and Wang, Y (2017) Solid-state fermentation of corn–soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. Journal of Animal Science and Biotechnology 8, 19.10.1186/s40104-017-0184-2CrossRefGoogle ScholarPubMed
Silva, TH, Amâncio, BR, Magnani, E, Meurer, GW, Reolon, HG, Timm, TG, Cappellozza, BI, Branco, RH and Paula, EM (2024) Evaluation of direct-fed microbials on in vitro ruminal fermentation, gas production kinetic, and greenhouse gas emissions in different ruminants’ diet. Frontiers in Animal Science 5, 1320075.10.3389/fanim.2024.1320075CrossRefGoogle Scholar
Sniffen, CJ, O’Connor, D, Fox, DG and Chalupa, W (1992) A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. Journal of Animal Science 71, 12981311.Google Scholar
Sun, P, Wang, JQ and Deng, LF (2013) Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal 7, 216222.10.1017/S1751731112001188CrossRefGoogle ScholarPubMed
Tagliapietra, F, Cattani, M, Hansen, HH, Hindrichsen, IK, Bailoni, L and Schiavon, S (2011) Metabolizable energy content of feeds based on 24 or 48 h in situ NDF digestibility and on in vitro 24 h gas production methods. Animal Feed Science and Technology 170, 182191.10.1016/j.anifeedsci.2011.09.008CrossRefGoogle Scholar
Timlin, CL, Dickerson, SM, Fowler, JW, McCracken, FB, Skaggs, PM, EkMay, R and Coon, CN (2024) The effects of torula yeast as a protein source on apparent total tract digestibility, inflammatory markers, and fecal microbiota dysbiosis index in Labrador Retrievers with chronically poor stool quality. Journal of Animal Science 102, SKAE013.10.1093/jas/skae013CrossRefGoogle ScholarPubMed
Timm, TG, Amâncio, BR, Loregian, KE, Magnani, E, Helm, CV, de Lima, EA, Marcondes, MI, Branco, RH, de Paula, EM, Benedeti, PDB and Tavares, LBB (2024) Peach palm shells (Bactris gasipaes Kunth) bioconversion by Lentinula edodes: Potential as new bioproducts for beef cattle feeding. Bioresource Technology 394, 130292.10.1016/j.biortech.2023.130292CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.10.3168/jds.S0022-0302(91)78551-2CrossRefGoogle ScholarPubMed
Verstrepen, L, Calatayud-Arroyo, M, Duysburgh, C, De Medts, J, EkMay, RD and Marzorati, M (2023) Amino acid digestibility of different formulations of torula yeast in an in vitro porcine gastrointestinal digestion model and their protective effects on barrier function and inflammation in a Caco-2/THP1 co-culture model. Animals 13, 2812.10.3390/ani13182812CrossRefGoogle Scholar
Yáñez-Ruiz, DR, Bannink, A, Dijkstra, J, Kebreab, E, Morgavi, DP, O’Kiely, P, Reynolds, CK, Schwarm, A, Shingfield, KJ, Yu, Z and Hristov, AN (2016) Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology 216, 118.10.1016/j.anifeedsci.2016.03.016CrossRefGoogle Scholar