Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T01:57:12.113Z Has data issue: false hasContentIssue false

Effects of the inclusion of treated jack beans (Canavalia ensiformis) and the amino acid canavanine in chick diets

Published online by Cambridge University Press:  27 March 2009

R. Belmar
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Apartado Postal 4–116, 97100 Mérida, Yucatán, México
T. R. Morris
Affiliation:
Department of Agriculture, University of Reading, Earley Gate, Reading RG6 2AT, UK

Summary

Three experiments were conducted in Mérida, Mexico, between 1987 and 1990 in which jack beans, treated in various ways, were included in chick diets at the rate of 300 g/kg diet. The diets were balanced by appropriate supplementation to provide the same concentrations of energy, minerals, vitamins and principal essential amino acids as control diets based on maize or sorghum and soyabean meal. Boiling jack beans or soaking and shaking them and the combination of boiling with soaking and shaking were studied with a view to removing or inactivating toxic factors and enhancing the utilization of the beans as a livestock feed. A fourth experiment was conducted to evaluate the contribution of canavanine to the deleterious effect observed when broiler chicks are fed diets containing treated jack beans and to examine the effect of canavanine on the efficiency of protein retention of broiler chicks.

Boiling for 1 or 2 h reduced the toxicity of jack beans, but chick growth rate was only half that of controls. The combination of boiling, followed by soaking and shaking, removed most of the jack beans’ anti-nutritional factors, but some toxic effects were left in the beans, causing a depression of c. 10% in feed intake and growth rate. Growth, feed intake and protein utilization of chicks were not affected when canavanine was added to a sorghum-soyabean diet at a level (3·5 g/kg diet) which matched the canavanine present in a diet containing 300 g/kg boiled jack beans.

It was concluded that boiling was a satisfactory procedure for the inactivation of the heat-labile lectins in jack beans and that soaking and shaking was an effective method of reducing canavanine and the haemolytic activity of the saponins in jack beans. However, canavanine was found not to be the main toxic or anti-nutritional factor present in jack beans.

Type
Animals
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acamovic, T. (1987). Analysis and nutritional evaluation for young chicks of some toxic factors in three novel legumes. Ph D thesis, Edinburgh University.Google Scholar
Acamovic, T. & D'mello, J. P. F. (1990). HPLC analysis of canavanine and canaline in Canavalia ensiformis, and in excreta and serum of chicks. Journal of the Science of Food and Agriculture 50, 6377.CrossRefGoogle Scholar
Association of Official Analytical Chemists (1970). Official Methods of Analysis of the Association of Official Analytical Chemists. Washington, DC: AOAC.Google Scholar
Attias, J., Shlesinger, M. J. & S., Shlesinger (1969). The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. Journal of Biological Chemistry 244, 38103817.CrossRefGoogle ScholarPubMed
Beauregard, C. J. & Pedrero, B. (1978). Estudio de aglutininas en semillas silvestres del estado de Tabasco. Universidad Juárez Autonoma de Tabasco, pp. 111.Google Scholar
Bell, E. A. (1972). Toxic amino acids in the Leguminosae. In Phytochemical Ecology (Ed. Harborne, J. B.), pp. 163177. London: Academic Press.Google Scholar
Bell, E. A., Lackey, J. A. & Polhill, R. M. (1978). Systematic significance of canavanine in the Papilionoidae (faboideae). Biochemical Systematics and Ecology 6, 201212.CrossRefGoogle Scholar
Belmar, F. R. (1993). Use of raw and treated jack beans (Canavalia ensiformis (L.)) in diets for chicks and pigs. Ph D thesis, University of Reading.Google Scholar
Borchers, R. & Ackerson, C. W. (1950). The nutritive value of legume seeds. X. Effect of autoclaving and the trypsin inhibitor test for 17 species. Journal of Nutrition 41, 339345.CrossRefGoogle Scholar
Bressani, R., Gómez Brenes, R., Garcia, A. & Elias, L. G. (1987). Chemical composition, amino acid content and protein quality of Canavalia spp. seeds. Journal of the Science of Food and Agriculture 40, 1723.CrossRefGoogle Scholar
Carvajal, A. J. (1987). Caracterizacion agronomica de la Canavalia ensiformis y otras leguminosas con potencial para el municipio de Tizimin, Yucatan. In Memorias de II Reunion sobre la produccion y utilizacion del grano de Canavalia ensiformis en sistemas pecuarios de Yucatan. Yucatán, México: FMVZ de la UADY.Google Scholar
Crine, P. & Lemieux, E. (1982). Incorporation of canavanine into rat pars intermedia proteins inhibits the maturation of pro-opiomelanocortin, the common precursor to adrenocorticotropin and β-lipotropin. Journal of Biological Chemistry 257, 832838.CrossRefGoogle ScholarPubMed
D. L., Dahlman & G. A., Rosenthal (1982). Potentiation of L-canavanine induced developmental anomalies in the tobacco hornworm, Manduca sexta, by some amino acids. Journal of Insect Physiology 28, 829833.Google Scholar
D'mello, J. P. F. & Walker, A. G. (1991). Detoxification of jack beans (Canavalia ensiformis): studies with young chicks. Animal Feed Science and Technology 33, 117127.CrossRefGoogle Scholar
D'mello, J. P. F., Acamovic, T. & Walker, A. G. (1985). Nutritive value of jack beans (Canavalia ensiformis (L.)DC.) for young chicks. Tropical Agriculture (Trinidad) 62, 145150.Google Scholar
D'mello, J. P. F., Walker, A. G. & Acamovic, T. (1988). Concentrations of total amino acids including canavanine during germination of Canavalia ensiformis (L.) DC. Tropical Agriculture (Trinidad) 65, 376377.Google Scholar
D'mello, J. P. F., Acamovic, T. & Walker, A. G. (1989). Nutritive value of jack beans (Canavalia ensiformis(L.) DC.) for young chicks: effects of amino acid supplementation. Tropical Agriculture (Trinidad) 66, 201205.Google Scholar
D'mello, J. P. F., Walker, A. G. & Noble, E. (1990). Effects of dietary supplements on the nutritive value of jack beans (Canavalia ensiformis) for the young chick. British Poultry Science 31, 759768.CrossRefGoogle Scholar
Escobar, A., Viera, J., Dixon, R., Mora, M. & Parra, R. (1983). Canavalia ensiformis: una leguminosa para la produccion animal en los trópicos. Informe Anual 83. I.P.A., Fac. de Ciencias, Universidad Central de Venezuela. Maracay. Venezuela, pp. 131164.Google Scholar
Hegarty, M. P. (1978). Toxic amino acids of plant origin. In Effects of Poisonous Plants on Livestock (Eds Keeler, F. R., Kampen, K. R. V. & James, L. F.), pp. 575585. New York: Academic Press.CrossRefGoogle Scholar
Hegdekar, B. M. (1970). Amino acid analogues as inhibitors of insect reproduction. Journal of Economic Entomology 63, 19501956.CrossRefGoogle ScholarPubMed
Huisman, J. & Tolman, G. H. (1992). Antinutritional factors in the plant proteins of diets for non-ruminants. In Recent Advances in Animal Nutrition – 1992 (Eds Garnsworthy, P. C., Haresign, W. & Cole, D. J. A.), pp. 331. Oxford: Butterworth-Heinemann.CrossRefGoogle Scholar
Jaffé, W. G. (1980). Hemagglutinins. In Toxic Constituents of Plant Foodstuffs (Ed. Liener, I. E.), pp. 69101. New York: Academic Press.Google Scholar
Jayne-Williams, D. J. (1973). Influence of dietary jack beans (Canavalia ensiformis) and of concanavalin A on the growth of conventional and gnotobiotic Japanese quail (Coturnix japonica). Nature New Biology 243, 150.CrossRefGoogle ScholarPubMed
Johnson, I. T., Gee, J. M., Price, K., Curl, C. & Fenwick, G. R. (1986). Influence of saponins on gut permeability and active nutrient transport in vitro. Journal of Nutrition 116, 22702277.CrossRefGoogle ScholarPubMed
Kessler, C. D. J. (1990). An agronomic evaluation of jack bean (Canavalia ensiformis) in Yucatan, Mexico. I. Plant density. Experimental Agriculture 26, 1122.CrossRefGoogle Scholar
Kessler, M., Belmar, R. & Ellis, N. (1990). Effects of autoclaving on the nutritive value of the seeds of Canavalia ensiformis (jackbean) for chicks. Tropical Agriculture (Trinidad) 67, 1620.Google Scholar
Leon, A., Reina, Y. & Vargas, R. (1986). Determination de la energia metabolizable de los granos de Canavalia ensiformis crudos o extruidos. Informe Anual 86. I.P.A., Fac. de Agronomia, Universidad Central de Venezuela. Maracay. Venezuela, pp. 4344.Google Scholar
Leon, T., Reina, Y. & Vargas, R. (1987). Respuesta en polios de engorde a harinas de Canavalia ensiformis de diferentes cultivares tratados en autoclave y remojo. Informe Anual 87. I.P.A., Fac. de Agronomia, Universidad Central de Venezuela. Maracay. Venezuela, pp. 5152.Google Scholar
Leon, A. M., Carre, B., Larbier, M., Lim, F., Ladjali, T. & Picard, M. (1990). Aminoacids and starch digestibility and true metabolisable energy content of raw and extruded jackbeans (Canavalia ensiformis) in adult cockerels. Annales de Zootechnie 39, 5361.CrossRefGoogle Scholar
Liener, I. E. (1980). Heat-labile antinutritional factors. In Advances in Legume Science (Eds Summerfield, R. J. & Bunting, A. H.), pp. 157170. Kew: Royal Botanic Gardens.Google Scholar
Liener, I. E. (1989). Antinutritional factors. In Legumes: Chemistry, Technology and Human Nutrition (Ed. Matthews, R. H.), pp. 339382. New York: Marcel Dekker.Google Scholar
Lis, H. & Sharon, N. (1986). Lectins as molecules and as tools. Annual Review of Biochemistry 55, 3567.CrossRefGoogle ScholarPubMed
Martinez, P. C. A., Galvan, C. R., Olvera, N. M. A. & Chavez, M. C. (1988). The use of jack bean (Canavalia ensiformis) meal as a partial substitute for fish meal in diets for Tilapia (Oreochromis mossambicus cichlidae). Aquaculture 68, 165175.CrossRefGoogle Scholar
Merck, (1989). The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals (Eds Budavari, S., O'Neal, M. J., Smith, A. & Heckelman, P. E.), pp. 263. Rahway, NJ, USA: Merck.Google Scholar
Milner, J. A. (1985). Metabolic aberrations associated with arginine deficiency. Journal of Nutrition 115, 516523.CrossRefGoogle ScholarPubMed
Montilla, J. J., Ferreiro, M., Cljpul, S., Gutierrez, M. & Preston, T. R. (1981). Preliminary observations: the effect of ensilage and heat treatment of Canavalia ensiformis seeds in diets for poultry. Tropical Animal Production 6, 376377.Google Scholar
Mullenax, C. H. (1979). The use of jack bean (Canavalia ensiformis) as a biological control for leafcutting ants. Biotropica 11, 313314.CrossRefGoogle Scholar
Neurath, A. R., Wiener, F. P., Rubin, B. A. & Hartzell, R. W. (1970). Inhibition of adenovirus replication by canavanine. Biochemical and Biophysical Research Communications 41, 15091517.CrossRefGoogle ScholarPubMed
Ologhobo, A. D., Apata, D. F. & Oyejide, A. (1993). Utilisation of raw jackbean (Canavalia ensiformis) and jackbean fractions in diets for broiler chicks. British Poultry Science 34, 323337.CrossRefGoogle Scholar
Pusztai, A. (1989). Biological effects of dietary lectins. In Recent Advances of Research in Antinutritional Factors in Legume Seeds: Proceedings of the First International Workshop on Antinutritional Factors (ANF) in Legume Seeds (Eds Huisman, J., Poel, T. F. B. van der & Liener, I. E.), pp. 1729. Wageningen: Pudoc.Google Scholar
Ramirez, A. L., Armendariz, Y. I. & Kessler, C. D. J. (1987). Estrategias en el manejo agronómico del frijol Canavalia ensiformis. In Memorias de II Reunion sobre la produccion y utilizacion del grano de Canavalia ensiformis en sistemas pecuarios de Yucatan. Yucatan, Mexico: FMVZ de la UADY.Google Scholar
Rosenthal, G. A. (1970). Investigations of canavanine biochemistry in the jack bean plant, Canavalia ensiformis (L.) DC. Plant Physiology 46, 273276.CrossRefGoogle Scholar
Rosenthal, G. A. (1977 a). The biological effects and mode of action of L-canavanine a structural analogue of Larginine. The Quarterly Review of Biology 52, 155178.CrossRefGoogle ScholarPubMed
Rosenthal, G. A. (1977 b). Preparation and colorimetric analysis of L-canavanine. Analytical Biochemistry 77, 147151.CrossRefGoogle ScholarPubMed
G. A., Rosenthal (1982). L-canavanine metabolism in jack bean, Canavalia ensiformis (L.) DC. (Leguminosae). Plant Physiology 69, 10661069.Google Scholar
Rosenthal, G. A. & Bell, E. A. (1979). Naturally occurring, toxic non-protein amino acids. In Herbivores: Their Interaction With Secondary Plant Metabolites (Ed. Rosenthal, G. A.), pp. 353381. London: Academic Press.Google Scholar
Shqueir, A. A., Brown, D. L. & Klasing, K. C. (1989). Canavanine content and toxicity of sesbania leaf meal for growing chicks. Animal Feed Science and Technology 25, 137147.CrossRefGoogle Scholar
Smartt, J. (1985). Evolution of grain legumes. II. Old and new world pulses of lesser economic importance. Experimental Agriculture 21, 118.CrossRefGoogle Scholar
Statistical Analysis Systems (1986). Computer program. Cary NC: SAS Institute.Google Scholar