Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T21:06:26.088Z Has data issue: false hasContentIssue false

Comparison of three methods to enumerate gut microbiota of weanling piglets fed insoluble dietary fibre differing in lignin content

Published online by Cambridge University Press:  05 February 2010

A. PETERSSON
Affiliation:
Division of Food Microbiology and Hygiene, Department of Food Sciences and Technology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190Vienna, Austria
K. J. DOMIG*
Affiliation:
Division of Food Microbiology and Hygiene, Department of Food Sciences and Technology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190Vienna, Austria
K. SCHEDLE
Affiliation:
Division of Animal Food and Nutrition, Department of Food Sciences and Technology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190Vienna, Austria
W. WINDISCH
Affiliation:
Division of Animal Food and Nutrition, Department of Food Sciences and Technology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190Vienna, Austria
W. KNEIFEL
Affiliation:
Division of Food Microbiology and Hygiene, Department of Food Sciences and Technology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190Vienna, Austria
*
*To whom all correspondence should be addressed. Email: konrad.domig@boku.ac.at

Summary

The aim of the current study was to compare three methods for determining the influence of different feeding strategies on the gut microbiota of piglets. Forty-eight weanling piglets were fed four different diets enriched with insoluble dietary fibre (wheat bran and pollen from Pinus massoniana). Starting from ileal and colonic samples, the total microbial DNA was isolated and bacterial parameters (lactobacilli, bifidobacteria, Bacteroides vulgatus and total bacterial counts) were quantified using real-time polymerase chain reaction (PCR). The results for lactobacilli, bifidobacteria and total bacterial counts were compared with those obtained by fluorescence in situ hybridization (FISH) and cultivation method. No significant differences could be observed between dietary treatments with real-time PCR and FISH for all investigated parameters. Comparing the applied three methods no consistent results were achieved, whereas FISH usually showed lower values. It was shown that real-time PCR can be regarded as an alternative to conventional techniques and also as a complement to results obtained from conventional culture method.

Type
Animals
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AACC Report. (2001). The definition of dietary fiber. Cereal Foods World 46, 112126.Google Scholar
Bartosch, S., Woodmansey, E. J., Paterson, J. C. M., McMurdo, M. E. T. & MacFarlane, G. T. (2005). Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clinical Infectious Diseases 40, 2837.CrossRefGoogle ScholarPubMed
Carey, C. M., Kirk, J. L., Ojha, S. & Kostrzynska, M. (2007). Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota, and probiotic use and effectiveness. Canadian Journal of Microbiology 53, 537550.CrossRefGoogle Scholar
Castillo, M., Martín-Orúe, S. M., Manzanilla, E. G., Badiola, I., Martín, M. & Gasa, J. (2006). Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veterinary Microbiology 114, 165170.CrossRefGoogle ScholarPubMed
Child, M. W., Kennedy, A., Walker, A. W., Bahrami, B., MacFarlane, S. & MacFarlane, G. T. (2006). Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS Microbiology Ecology 55, 299310.CrossRefGoogle ScholarPubMed
Fu, C. J., Carter, J. N., Li, Y., Porter, J. H. & Kerley, M. S. (2006). Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces. Letters in Applied Microbiology 42, 490494.CrossRefGoogle ScholarPubMed
Gueimonde, M., Tölkkö, S., Korpimäki, T. & Salminen, S. (2004). New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Applied and Environmental Microbiology 70, 41654169.CrossRefGoogle ScholarPubMed
Harmsen, H. J. M., Gibson, G. R., Elfferich, P., Raangs, G. C., Wildeboer-Veloo, A. C. M., Argaiz, A., Roberfroid, M. B. & Welling, G. W. (2000). Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiology Letters 183, 125129.CrossRefGoogle ScholarPubMed
Hogardt, M., Trebesius, K., Geiger, A. M., Hornef, M., Rosenecker, J. & Heesemann, J. (2000). Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. Journal of Clinical Microbiology 38, 818825.CrossRefGoogle ScholarPubMed
Holzapfel, B. & Wickert, L. (2007). Die quantitative real-time-PCR (qRT-PCR). Biologie in Unserer Zeit 37, 120126.CrossRefGoogle Scholar
Huijsdens, X. W., Linskens, R. K., Mak, M., Meuwissen, S. G. M., Vandenbroucke-Grauls, C. M. J. E. & Savelkoul, P. H. M. (2002). Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. Journal of Clinical Microbiology 40, 44234427.CrossRefGoogle ScholarPubMed
Kok, R. G., De Waal, A., Schut, F., Welling, G. W., Weenk, G., Hellingwerf, K. J. (1996). Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Applied and Environmental Microbiology 62, 36683672.CrossRefGoogle ScholarPubMed
Lahtinen, S. J., Gueimonde, M., Ouwehand, A. C., Reinikainen, J. P. & Salminen, S. J. (2006). Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiology 23, 571577.CrossRefGoogle Scholar
Leser, T. D., Lindecrona, R. H., Jensen, T. K., Jensen, B. B., Møller, K. (2000). Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Applied and Environmental Microbiology 66, 32903296.CrossRefGoogle ScholarPubMed
Li, M., Gong, J., Cottrill, M., Yu, H., De Lange, C., Burton, J. & Topp, E. (2003). Evaluation of QIAamp® DNA Stool Mini Kit for ecological studies of gut microbiota. Journal of Microbiological Methods 54, 1320.CrossRefGoogle ScholarPubMed
Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T. & Tanaka, R. (2004). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Applied and Environmental Microbiology 70, 72207228.CrossRefGoogle ScholarPubMed
McCartney, A. L. (2002). Application of molecular biological methods for studying probiotics and the gut flora. British Journal of Nutrition 88, S29S37.CrossRefGoogle ScholarPubMed
Metzler, B., Bauer, E. & Mosenthin, R. (2005). Microflora management in the gastrointestinal tract of piglets. Asian-Australasian Journal of Animal Sciences 18, 13531362.CrossRefGoogle Scholar
Moter, A. & Göbel, U. B. (2000). Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. Journal of Microbiological Methods 41, 85–112.CrossRefGoogle ScholarPubMed
Namsolleck, P., Thiel, R., Lawson, P., Holmstrøm, K., Rajilic, M., Vaughan, E. E., Rigottier-Gois, L., Collins, M. D., De Vos, W. M. & Blaut, M. (2004). Molecular methods for the analysis of gut microbiota. Microbial Ecology in Health and Disease 16, 7185.CrossRefGoogle Scholar
Pieper, R., Janczyk, P., Zeyner, A., Smidt, H., Guiard, V. & Souffrant, W. B. (2008). Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets. Microbial Ecology 56, 474483.CrossRefGoogle ScholarPubMed
Rada, V. & Petr, J. (2002). Enumeration of bifidobacteria in animal intestinal samples. Veterinární Medicína 47, 14.CrossRefGoogle Scholar
Richards, J. D., Gong, J. & De Lange, C. F. M. (2005). The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science 85, 421435.CrossRefGoogle Scholar
Rintillä, T., Kassinen, A., Malinen, E., Krogius, L. & Palva, A. (2004). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. Journal of Applied Microbiology 97, 11661177.CrossRefGoogle Scholar
Schedle, K., Plitzner, C., Ettle, T., Zhao, L., Domig, K. J. & Windisch, W. (2008 a). Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Archives of Animal Nutrition 62, 141151.CrossRefGoogle ScholarPubMed
Schedle, K., Pfaffl, M. W., Plitzner, C., Meyer, H. H. D., Windisch, W. (2008 b). Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Archives of Animal Nutrition 62, 427438.CrossRefGoogle Scholar
Solano-Aguilar, G., Dawson, H., Restrepo, M., Andrews, K., Vinyard, B. & Urban, J. F. Jr. (2008). Detection of Bifidobacterium animalis subsp. lactis (Bb12) in the intestine after feeding of sows and their piglets. Applied and Environmental Microbiology 74, 63386347.CrossRefGoogle ScholarPubMed
Tsiodras, S., Gold, H. S., Coakley, E. P. G., Wennersten, C., Moellering, R. C. & Eliopoulos, G. M. (2000). Diversity of domain V of 23S rRNA gene sequence in different Enterococcus species. Journal of Clinical Microbiology 38, 39913993.CrossRefGoogle ScholarPubMed
Tzortzis, G., Goulas, A. K., Gee, J. M. & Gibson, G. R. (2005). A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. Journal of Nutrition 135, 17261731.CrossRefGoogle Scholar
Van Nevel, C. J., Decuypere, J. A., Dierick, N. A. & Molly, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets: effect on bacteriological and some morphological characteristics of the small intestine. Archives of Animal Nutrition 59, 123138.CrossRefGoogle ScholarPubMed
Wagner, M., Horn, M. & Daims, H. (2003). Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Current Opinion in Microbiology 6, 302309.CrossRefGoogle ScholarPubMed
Wenk, C. (2001). The role of dietary fibre in the digestive physiology of the pig. Animal Feed Science and Technology 90, 2133.CrossRefGoogle Scholar
Zhao, L., Windisch, W., Roth, F. X., Eder, K. & Ettle, T. (2007). Nutritive value of Masson Pine pollen (Pinus massoniana) in comparison to wheat bran and effects on stool characteristics in a pig model. Bodenkultur 58, 7382.Google Scholar