Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T20:49:51.623Z Has data issue: false hasContentIssue false

Clonal selection in a globe artichoke landrace: characterization of superior germplasm to improve cultivation in Mediterranean environments

Published online by Cambridge University Press:  28 October 2013

R. P. MAURO
Affiliation:
Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA) – Agronomical Sciences, University of Catania, via Valdisavoia 5, I-95123 Catania, Italy
E. PORTIS*
Affiliation:
Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA) – Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, I-10095 Grugliasco, Torino, Italy
S. LANTERI
Affiliation:
Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA) – Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, I-10095 Grugliasco, Torino, Italy
A. LO MONACO
Affiliation:
Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA) – Agronomical Sciences, University of Catania, via Valdisavoia 5, I-95123 Catania, Italy
G. MAUROMICALE
Affiliation:
Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA) – Agronomical Sciences, University of Catania, via Valdisavoia 5, I-95123 Catania, Italy
*
*To whom all correspondence should be addressed. Email: ezio.portis@unito.it

Summary

The morphological (using International Union for the Protection of New Varieties of Plants (UPOV) descriptors) and field performance of five clones selected from the globe artichoke landrace Spinoso di Palermo were determined over two seasons, and their amplified fragment length polymorphism (AFLP) profiles detected using seven primer combinations (PCs). The number of heads produced averaged 13·8 per plant (equivalent to a fresh weight yield of 2·1 kg/plant), but two of the clones produced 15·6 heads per plant (2·4 kg/plant). Three clones produced noticeably larger second-order heads (mean of 156 g), and so were considered to be suitable for the production of desirable heads over a prolonged harvesting period. Head yield and the number of heads per plant were associated with a moderate level of broad sense heritability (0·29–0·46), implying that these traits could be viewed as primary selection criteria. From the list of 51 UPOV descriptors, 18 varied among the five clones, but variation at just six, simply scored, descriptors was sufficient to discriminate completely between the examined clones. Full discrimination was also achieved by applying only three of the seven selected AFLP PCs. According to the AFLP profiles, two of the clones were highly similar. The similarity matrices calculated from the UPOV descriptors and the AFLP profiles were highly correlated with one another. The data are optimistic and indicate that the performance of Spinoso di Palermo could be much improved via clonal selection.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acquadro, A., Papanice, M. A., Lanteri, S., Bottalico, G., Portis, E., Campanale, A., Finetti-Sialer, M. M., Mascia, T., Sumerano, P. & Gallitelli, D. (2010). Production and fingerprinting of virus-free clones in a reflowering globe artichoke. Plant Cell, Tissue and Organ Culture 100, 329337.Google Scholar
Anderson, J. A., Churchill, G. A., Autrique, J. E., Sorells, M. E. & Tanksley, S. D. (1993). Optimizing parental selection for genetic-linkage maps. Genome 36, 181186.CrossRefGoogle ScholarPubMed
Babic, M., Babic, V., Prodanovic, S., Filipovic, M. & Andelkovic, V. (2012). Comparison of morphological and molecular genetic distances of maize inbreds. Genetika 44, 119128.CrossRefGoogle Scholar
Basnizki, Y. & Zohary, D. (1994). Breeding of seed planted artichoke. Plant Breeding Reviews 12, 253269.Google Scholar
Bianco, V. V. (2011). The artichoke: a travelling companion in the social life, traditions and culture. Acta Horticulturae 942, 2540.Google Scholar
Ciancolini, A., Rey, N. A., Pagnotta, M. A. & Crinò, P. (2012). Characterization of Italian spring globe artichoke germplasm: morphological and molecular profiles. Euphytica 186, 433443.Google Scholar
Faostat (2011). FAO Statistical Database. Rome: FAO. Available from: http://www.faostat.org/ (verified 13 August 2013).Google Scholar
Foury, C. (1967). étude de la biologie florale de l'artichaut (Cynara scolymus L.): application à la selection. 1er partie: données sur la biologie florale. Annales de l'Amélioration des Plantes 17, 357373.Google Scholar
Gepts, P. (2006). Plant genetic resources conservation and utilization: the accomplishment and future of a societal insurance policy. Crop Science 46, 22782292.Google Scholar
Hajjar, R., Jarvis, D. I. & Gemmill-Herren, B. (2008). The utility of crop genetic diversity in maintaining ecosystem services. Agriculture, Ecosystems and Environment 123, 261270.Google Scholar
Hammer, K. & Teklu, Y. (2008). Plant genetic resources: selected issues from genetic erosion to genetic engineering. Journal of Agriculture and Rural Development in the Tropics and Subtropics 109, 1550.Google Scholar
Heisey, P. W. & Brennan, J. P. (1991). An analytical model of farmers’ demand for replacement seed. American Journal of Agricultural Economics 73, 10441052.Google Scholar
Jackson, J. A. & Matthews, D. (2000). Modified inter-simple sequence repeat PCR protocol for use in conjunction with the Li-Cor gene ImagIR(2) DNA analyzer. Biotechniques 28, 914917.Google Scholar
Lanteri, S. & Portis, E. (2008). Globe artichoke and cardoon. In Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae and Cucurbitaceae (Eds Prohens, J. & Nuez, F.), pp. 4974. New York, USA: Springer.CrossRefGoogle Scholar
Lanteri, S., Saba, E., Cadinu, M., Mallica, G. M., Baghino, L. & Portis, E. (2004). Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theoretical and Applied Genetics 108, 15341544.Google Scholar
Lanteri, S., Portis, E., Acquadro, A., Mauro, R. P. & Mauromicale, G. (2012). Morphology and SSR fingerprinting of newly developed Cynara cardunculus genotypes exploitable as ornamentals. Euphytica 184, 311321.Google Scholar
Lattanzio, V., Kroon, P. A., Linsalata, V. & Cardinali, A. (2009). Globe artichoke: a functional food and source of nutraceutical ingredients. Journal of Functional Foods 1, 131144.Google Scholar
Lombardo, S., Pandino, G., Mauro, R. & Mauromicale, G. (2009). Variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Italian Journal of Agronomy 4, 181190.Google Scholar
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Mauro, R., Ierna, A., Portis, E., Lanteri, S. & Mauromicale, G. (2007). Morphological and molecular characterization of autochthonous Sicilian globe artichokes grown in family gardens. Acta Horticulturae 730, 113120.Google Scholar
Mauro, R., Portis, E., Acquadro, A., Lombardo, S., Mauromicale, G. & Lanteri, S. (2009). Genetic diversity of globe artichoke landraces from Sicilian small-holdings: implications for evolution and domestication of the species. Conservation Genetics 10, 431440.Google Scholar
Mauro, R. P., Lombardo, S., Longo, A. M. G., Pandino, G. & Mauromicale, G. (2011). New cropping designs of globe artichoke for industrial use. Italian Journal of Agronomy 6, 4449.Google Scholar
Mauro, R. P., Portis, E., Lanteri, S. & Mauromicale, G. (2012). Genotypic and bio-agronomical characterization of an early Sicilian landrace of globe artichoke. Euphytica 186, 357366.CrossRefGoogle Scholar
Mauromicale, G. & Ierna, A. (2000). Characteristics of heads of seed-grown globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori] as affected by harvest period, sowing date and gibberellic acid. Agronomie 20, 197204.Google Scholar
Mercer, K. L. & Perales, H. R. (2010). Evolutionary response of landraces to climate change in centers of crop diversity. Evolutionary Applications 3, 480493.Google Scholar
Pandino, G., Lombardo, S., Mauro, R. P. & Mauromicale, G. (2012). Variation in polyphenol profile and head morphology among clones of globe artichoke selected from a landrace. Scientia Horticulturae 138, 259265.CrossRefGoogle Scholar
Porceddu, E., Dellacecca, V. & Bianco, V. V. (1976). Classificazione numerica di cultivar di carciofo. In Proceedings of the II International Congress on Artichoke (Ed. Minerva Medica), pp. 11051119. Turin, Italy: Minerva Medica.Google Scholar
Portis, E., Mauromicale, G., Barchi, L., Mauro, R. & Lanteri, S. (2005). Population structure and genetic variation in autochthonous globe artichoke germplasm from Sicily Island. Plant Science 168, 15911598.Google Scholar
Portis, E., Mauromicale, G., Mauro, R., Acquadro, A., Scaglione, D. & Lanteri, S. (2009). Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theoretical and Applied Genetics 120, 5970.Google Scholar
Portis, E., Scaglione, D., Acquadro, A., Mauromicale, G., Mauro, R., Knapp, S. J. & Lanteri, S. (2012). Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Research Notes 5, 252266.CrossRefGoogle ScholarPubMed
Rohlf, F. J. (2000). NTSYS, Numerical Taxonomy and Multivariate Analysis System. version 2·1. Exeter Software. New York: Applied Biostatistics Inc. Google Scholar
Singh, S. P., Gutierrez, J. A., Molina, A., Urrea, C. & Gepts, P. (1991). Genetic diversity in cultivated common bean: II. Marker based analysis of morphological and agronomic traits. Crop Science 31, 2329.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy: the Principles and Practice of Numerical Classification. San Francisco, USA: W. H. Freeman.Google Scholar
Tatineni, V., Cantrell, R. G. & Davis, D. D. (1996). Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Science 36, 186192.CrossRefGoogle Scholar
UPOV (2011). Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability: Globe Artichoke (Cynara cardunculus L.) . Document number TG/184/4. Geneva, Switzerland: UPOV. Available from: http://www.upov.int/test_guidelines/en/fulltext_tgdocs.jsp?lang_code=EN&q=globe+artichoke (verified 13 August 2013).Google Scholar
USDA (1975). Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Conservation Service, USDA Handbook 436. Washington, DC: U.S. Government Printing Office.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. & Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.Google Scholar
Supplementary material: File

Mauro Supplementary Material

Table S1

Download Mauro Supplementary Material(File)
File 47.6 KB