Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T15:39:18.440Z Has data issue: false hasContentIssue false

Intercropping and cover crop effects on maize nitrogen requirement for optimal growth

Published online by Cambridge University Press:  01 August 2022

S. S. Souza
Affiliation:
School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donatto Castellane, km 5, s/n. 14884-900, Jaboticabal, São Paulo, Brazil
J. A. Flôres
Affiliation:
School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donatto Castellane, km 5, s/n. 14884-900, Jaboticabal, São Paulo, Brazil
A. P. Coelho*
Affiliation:
School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donatto Castellane, km 5, s/n. 14884-900, Jaboticabal, São Paulo, Brazil
J. M. Deienno
Affiliation:
School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donatto Castellane, km 5, s/n. 14884-900, Jaboticabal, São Paulo, Brazil
L. B. Lemos
Affiliation:
School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donatto Castellane, km 5, s/n. 14884-900, Jaboticabal, São Paulo, Brazil
G. S. Rolim
Affiliation:
School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donatto Castellane, km 5, s/n. 14884-900, Jaboticabal, São Paulo, Brazil
*
Author for correspondence: A. P. Coelho, E-mail: anderson_100ssp@hotmail.com

Abstract

Intercropping maize (Zea mays L.) with cover crops (Crotalaria spectabilis and Urochloa ruziziensis) is a sustainable cultivation strategy that can generate ecological benefits combined with grain yield (GY). However, cover crops may require nitrogen (N) fertilization management to be adjusted to obtain a high GY in intercropping systems. This study was carried out over 2 years in southeastern Brazil using randomized complete block design in a split-plot scheme. The plots were composed of three cropping systems: sole maize, maize + U. ruziziensis and maize + C. spectabilis. The subplots consisted of four N levels: 0, 70, 140 and 210 kg/ha. The GY of the maize + U. ruziziensis may be reduced by 13% compared to the sole maize. The GY of the sole maize increased up to 11.3 Mg/ha for 95 kg/ha of N in the first year and 6.7 Mg/ha for 169 kg/ha of N in the second year. The GY of the maize + U. ruziziensis intercropping system showed linear increments of 120 kg/ha for every 10 kg/ha of N applied. In the maize + C. spectabilis intercropping, GY increased up to 9.8 Mg/ha for 201 kg/ha of N in the first year, without any variation during the second year. The land equivalent ratio (LER) of intercropping was increased by more than 35% compared to that of sole maize, and N fertilization increased the LER of the sole maize and maize + U. ruziziensis intercropping. Maize intercropping had higher LER values with greater demand for nitrogen to obtain similar yields compared to sole maize cropping.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, REM, Favarin, JL, Otto, R, Pierozan, C, Oliveira, SM, Tezotto, T and Lago, BC (2017) Effects of nitrogen fertilization on yield components in a corn-palisadegrass intercropping system. Australian Journal of Crop Science 11, 352359.CrossRefGoogle Scholar
Arf, O, Meirelles, FC, Portugal, JR, Buzetti, S, , ME and Rodrigues, RAF (2018) Benefícios do milho consorciado com gramínea e leguminosas e seus efeitos na produtividade em sistema plantio direto. Revista Brasileira de Milho e Sorgo 17, 431444.CrossRefGoogle Scholar
Borghi, E, Crusciol, CAC, Trivelin, PCO, Nascente, AS, Costa, C and Mateus, GP (2014) Nitrogen fertilization (15NH4NO3) of palisadegrass and residual effect on subsequent no-tillage corn. Revista Brasileira de Ciência do Solo 38, 14571468.CrossRefGoogle Scholar
Calegari, A and Carlos, JAD (2014) Recomendações de plantio e. Informações gerais sobre o uso de espécies para adubação verde no Brasil. In de Lima Filho, OF, Ambrosano, EJ, Rossi, F and Carlos, JAD (eds). Adubação verde e plantas de cobertura no Brasil: Fundamentos e prática. Brasília: Embrapa, pp. 451477.Google Scholar
Cambaúva, V, Leal, FT and Lemos, LB (2019) Crescimento, produtividade e palhada de milho exclusivo e consorciado com crotalárias em diferentes espaçamentos. Revista Brasileira de Milho e Sorgo 18, 99111.CrossRefGoogle Scholar
Cambaúva, V, Leal, FT, Coelho, AP and Lemos, LB (2022) Do Crotalaria plant height and maize inter-row spacing affect intercropped maize yield? Revista Brasileira de Milho e Sorgo 21, e1260.CrossRefGoogle Scholar
Cantarella, H and Raij, BV (1997) Cereais. In Raij, BV, Cantarella, H, Quaggio, and Furlani, AMC (eds), Recomendação de adubação e calagem para o Estado de São Paulo, 2nd edn. Campinas: Instituto Agronômico de Campinas, pp. 4849.Google Scholar
Carmo, CAFS, de Araújo, WS, Bernardi, ACC and Saldanha, MFC (2000) Métodos de análise de tecidos vegetais utilizados na Embrapa Solos. Rio de Janeiro: Embrapa Solos, 41 p. (Embrapa Solos. Circular Técnica, 6).Google Scholar
Costa, NR, Andreotti, M, Lopes, KSM, Santos, FG and Pariz, CM (2014) Adubação nitrogenada em capins do gênero Urochloa implantados em consórcio com a cultura do milho. Revista Brasileira de Ciências Agrárias 9, 376383.CrossRefGoogle Scholar
Crusciol, CAC, Nascente, AS, Mateus, GP, Borghi, E, Leles, EP and Santos, ND (2013) Effect of intercropping on yields of corn with different relative maturities and palisadegrass. Agronomy Journal 105, 599606.CrossRefGoogle Scholar
da Silva Brum, M, dos Cunha, VS, Stecca, JDL, Grando, LFT and Martin, TN (2016) Components of corn crop yield under inoculation with Azospirillum brasilense using integrated crop-livestock system. Acta Scientiarum Agronomy 38, 485492.CrossRefGoogle Scholar
Deienno, J, Souza, SS, Coelho, AP and Lemos, LB (2021) Maize intercropping and nitrogen fertilization aiming grain yield and implement a no-till system. Brazilian Journal of Maize and Sorghum 20, e1225.Google Scholar
de Oliveira, P, Kluthcouski, J, Favarin, JL and de Santos, DC (2010) Sistema Santa Brígida – Tecnologia Embrapa: Consorciação de Milho com Leguminosas. Santo Antonio de Goiás: Embrapa Arroz e Feijão, 16 p. (Embrapa Arroz e Feijão. Circular Técnica, 88).Google Scholar
dos Santos, LPD, Aquino, LA, Nunes, PHMP and Xavier, FO (2013) Doses de nitrogênio na cultura do milho para altas produtividades de grãos. Revista Brasileira de Milho e Sorgo 12, 270279.CrossRefGoogle Scholar
Du, X, Xi, M and Kong, L (2019) Split application of reduced nitrogen rate improves nitrogen uptake and use efficiency in sweetpotato. Scientific Reports 9, 111.CrossRefGoogle ScholarPubMed
Duete, RRC, Muraoka, T, da Silva, EC, Trivelin, PCO and Ambrosano, EJ (2008) Manejo da adubação nitrogenada e utilização do nitrogênio (15N) pelo milho em Latossolo Vermelho. Revista Brasileira de Ciência do Solo 32, 161171.CrossRefGoogle Scholar
Fan, Y, Wang, Z, Liao, D, Ali Raza, M, Wang, B, Zhang, J, Chen, J, Feng, L, Wu, X, Liu, C, Yang, W and Yang, F (2020) Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize soybean intercropping under different row configurations. Scientific Reports 10, 110.CrossRefGoogle ScholarPubMed
Ferreira, DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35, 10391042.CrossRefGoogle Scholar
Gastwirth, JL, Gel, YR and Miao, W (2009) The impact of Levene's test of equality of variances on statistical theory and practice. Statistical Science 24, 343360.CrossRefGoogle Scholar
Gonçalves, AKA, Silva, TRB and Brandão, AG (2016) Manejo de adubação nitrogenada em milho solteiro e consorciado com Brachiaria ruziziensis. Revista Brasileira de Milho e Sorgo 15, 318327.CrossRefGoogle Scholar
Kaiser, HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187200.CrossRefGoogle Scholar
Kappes, C and Zancanaro, L (2015) Sistemas de consórcios de braquiária e de crotalárias com a cultura do milho. Revista Brasileira de Milho e Sorgo 14, 219234.CrossRefGoogle Scholar
Kluthcouski, J, Cobucci, T, Aidar, H, Yokoyama, LP, Oliveira, IP, Costa, JLS, Silva, JG, Vilela, L, Barcellos, AO and Magnabosco, CU (2000) Sistema Santa Fé – Tecnologia Embrapa: integração lavoura-pecuária pelo consórcio de culturas anuais com forrageiras, em áreas de lavoura, nos sistemas de plantio direto e convencional. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 28 p. (Embrapa Arroz e Feijão. Circular Técnica, 38).Google Scholar
Marcelo, AV, Corá, JE and Fernandes, C (2012) Sequências de culturas em sistema de semeadura direta II – decomposição e liberação de nutrientes na entressafra. Revista Brasileira de Ciência do Solo 36, 15681582.CrossRefGoogle Scholar
Marini, D, Guimarães, VF and Dartora, J, do Lana, MC and Pinto Júnior, AS (2015) Growth and yield of corn hybrids in response to association with Azospirillum brasilense and nitrogen fertilization. Revista Ceres 62, 117123.CrossRefGoogle Scholar
Martin-Guay, M-O, Paquette, A, Dupras, J and Rivest, D (2018) The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment 615, 767772.CrossRefGoogle ScholarPubMed
Martins, D, Gonçalves, CG and Silva Junior, AC (2016) Coberturas mortas de inverno e controle químico sobre plantas daninhas na cultura do milho. Revista Ciência Agronômica 47, 649657.Google Scholar
Mead, R and Willey, R (1980) The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture 16, 217228.CrossRefGoogle Scholar
Mingotte, FLC, Yada, MM, Jardim, CA, Fiorentin, CF, Lemos, LB and Fornasieri Filho, D (2014) Sistemas de cultivo antecessores e doses de nitrogênio em cobertura no feijoeiro em plantio direto. Bioscience Journal 30, 696706.Google Scholar
Mingotte, FLC, Jardim, CA, Yada, MM, Amaral, CB, Chiamolera, TPLC, Coelho, AP, Lemos, LB and Fornasieri Filho, D (2020) Impact of crop management and no-tillage system on grain and straw yield of maize crop. Cereal Research Communications 48, 399407.CrossRefGoogle Scholar
Murrell, EG, Schipanski, ME, Finney, DM, Hunter, MC, Burgess, M, LaChance, JC, Baraibar, B, White, CM, Mortensen, DA and Kaye, JP (2017) Achieving diverse cover crop mixtures: effects of planting date and seeding rate. Agronomy Journal 109, 259271.CrossRefGoogle Scholar
Pacheco, LP, Barbosa, JM, Leandro, WM, de Machado, PLOA, de Assis, RL, Madari, BE and Petter, FA (2013) Ciclagem de nutrientes por plantas de cobertura e produtividade de soja e arroz em plantio direto. Pesquisa Agropecuária Brasileira 48, 12281236.CrossRefGoogle Scholar
Pariz, CM, Andreotti, M, Azenha, MV, Bergamaschine, AF, Mello, LMM and Lima, RC (2011) Corn grain yield and dry mass of Brachiaria intercrops in the crop–livestock integration system. Ciência Rural 41, 875882.CrossRefGoogle Scholar
Pivetta, LA, Jordão, LM, Larini, WF, Luchese, AV, Gasparin, CE, Debuss, AL, Carvalho, MG and Silva, WO (2019) Doses e épocas de aplicação de nitrogênio em milho safrinha. Journal of Agronomic Sciences 8, 113.Google Scholar
Raij, BV and Cantarella, H (1997) Milho para grão e silage. In Raij, BV, Cantarella, H, Quaggio, JA and Furlani, AMC (eds). Recomendação de adubação e calagem para o Estado de São Paulo. Campinas: Instituto Agronômico de Campinas (IAC), pp. 5659 (Boletim Técnico, 100).Google Scholar
Rolim, GS, Camargo, MBP, Lania, DG and Moraes, JFL (2007) Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo. Bragantia 66, 711720.CrossRefGoogle Scholar
Royston, P (1995) Remark AS R94: a remark on algorithm AS 181: the W-test for normality. Journal of the Royal Statistical Society 44, 547551.Google Scholar
Salama, HAS, Nawar, AI and Khalil, HE (2022) Intercropping pattern and n fertilizer schedule affect the performance of additively intercropped maize and forage cowpea in the Mediterranean region. Agronomy 12, 107.CrossRefGoogle Scholar
Schipanski, ME, Barbercheck, M, Douglas, MR, Finney, DM, Haider, K, Kaye, JP, Kemanian, AR, Mortensen, DA, Ryan, MR, Tooker, J and White, C (2014) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems 125, 1222.CrossRefGoogle Scholar
Silva, GSF, Andrade Júnior, ASD, Cardoso, MJ and Araújo Neto, RBD (2020) Soil water dynamics and yield in maize and Brachiaria ruziziensis intercropping. Pesquisa Agropecuária Tropical 50, e59809.CrossRefGoogle Scholar
Silveira, PM, Silva, JH, Lobo Junior, M and Cunha, PCR (2011) Atributos do solo e produtividade do milho e do feijoeiro irrigado sob sistema integração lavoura-pecuária. Pesquisa Agropecuária Brasileira 46, 11701175.CrossRefGoogle Scholar
Soil Survey Staff (2014) Keys to Soil Taxonomy, 12th ed, Washington, DC: Department of Agriculture. Natural Resources Conservation Service, 372 p.Google Scholar
Souza, JA, Buzetti, S, Teixeira Filho, MCM, Andreotti, M, , ME and Arf, O (2011) Adubação nitrogenada na cultura do milho safrinha irrigado em plantio direto. Bragantia 70, 447454.CrossRefGoogle Scholar
Souza, SS, Couto Júnior, PA, de Flôres, JA, Mingotte, FLC and Lemos, LB (2019) Maize cropping systems and response of common bean in succession subjected to nitrogen fertilization. Pesquisa Agropecuária Tropical 49, 111.CrossRefGoogle Scholar
Tan, M (2020) Macro- and micromineral contents of different quinoa (Chenopodium quinoa Willd.) varieties used as forage by cattle. Turkish Journal of Agriculture and Forestry 44, 4653.CrossRefGoogle Scholar
Trevisan, M, Silva, LFS, Fontanetti, A, Souza Gallo, A and França Guimarães, N (2021) Soil temperature and moisture in the intercropping of maize with Crotalaria spectabilis and Cajanus cajan in an organic system. Research, Society and Development 10, e539101422443.CrossRefGoogle Scholar
United Nations (2021) Transforming our World: The 2030 Agenda for Sustainable Development. Available in: https://sdgs.un.org/2030agenda (Accessed 31 May 2021).Google Scholar
USDA - United States Department of Agriculture (2021) World Agricultural Production. Foreign Agricultural Service/USDA Global Market Analysis, Circular Series WAP 2-20. Available in: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (Accessed 3 January 2021).Google Scholar