Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T23:25:02.689Z Has data issue: false hasContentIssue false

Do dietary patterns influence cognitive function in old age?

Published online by Cambridge University Press:  04 June 2013

Janie Corley
Affiliation:
Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
John M. Starr
Affiliation:
Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Geriatric Medicine Unit, University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SB, UK
Geraldine McNeill
Affiliation:
Public Health Nutrition Group, Institute of Applied Health Sciences, University of Aberdeen, Polwarth Building, Aberdeen AB25 2ZD, UK
Ian J. Deary*
Affiliation:
Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
*
Correspondence should be addressed to: Prof. Ian J. Deary, Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, Scotland, UK. Phone: +44-131-650-3452. Email: I.Deary@ed.ac.uk.
Get access

Abstract

Background:

Evidence from observational studies to date suggests that healthy dietary patterns are associated with better cognitive performance in later life. We examined the extent to which childhood intelligence quotient (IQ) and socioeconomic status account for this association.

Methods:

Analyses were carried out on 882 participants in the Lothian Birth Cohort 1936 Study. Four dietary patterns were extracted using principal components analysis of a food frequency questionnaire, namely “Mediterranean-style,” “health aware,” “traditional,” and “sweet foods.” Cognitive function was assessed at the age of 70 years, including general (g) cognitive ability, processing speed, memory, and verbal ability.

Results:

Before adjustment for childhood IQ and socioeconomic status, the “Mediterranean-style” dietary pattern was associated with significantly better cognitive performance (effect size as partial eta-square (ηp2) range = 0.005 to 0.055), and the “traditional” dietary pattern was associated with poorer performance on all cognitive domains measured in old age (ηp2 = 0.009 to 0.103). After adjustment for childhood IQ (measured at the age of 11 years) and socioeconomic status, statistical significance was lost for most associations, with the exception of verbal ability and the “Mediterranean-style” pattern (National Adult Reading Test (NART) ηp2 = 0.006 and Wechsler Test of Adult Reading (WTAR) ηp2 = 0.013), and the “traditional” pattern (NART ηp2 = 0.035 and WTAR ηp2 = 0.027).

Conclusions:

Our results suggest a pattern of reverse causation or confounding; a higher childhood cognitive ability (and adult socioeconomic status) predicts adherence to a “healthy” diet and better cognitive performance in old age. Our models show no direct link between diet and cognitive performance in old age; instead they are related via the lifelong-stable trait of intelligence.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbaraly, T. N.et al. (2011). Alternative healthy eating index and mortality over 18 y of follow-up: results from the Whitehall II cohort. American Journal of Clinical Nutrition, 94, 247253. doi:10.3945/ajcn.111.013128.CrossRefGoogle ScholarPubMed
Allès, B., Samieri, C., Féart, C., Jutand, M. A., Laurin, D. and Barberger-Gateau, P. (2012). Dietary patterns: a novel approach to examine the link between nutrition and cognitive function in older individuals. Nutrition Research Reviews, 25, 116. doi:10.1017/S0954422412000133.CrossRefGoogle ScholarPubMed
Anstey, K. J., Lowb, L.-F., Christensen, H. and Sachdev, P. (2009). Level of cognitive performance as a correlate and predictor of health behaviors that protect against cognitive decline in late life: the path through life study. Intelligence, 37, 600606. doi:10.1016/j.intell.2008.10.001.CrossRefGoogle Scholar
Awad, N., Gagnon, M. and Messier, C. (2004). The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. Journal of Clinical and Experimental Neuropsychology, 26, 10441080. doi:10.1080/13803390490514875.CrossRefGoogle ScholarPubMed
Batty, G. D. and Deary, I. J. (2004). Early life intelligence and adult health. British Medical Journal, 329, 585586. doi:10.1136/bmj.329.7466.585.CrossRefGoogle ScholarPubMed
Batty, G. D., Deary, I. J., Schoon, I. and Gale, C. R. (2007). Childhood mental ability in relation to food intake and physical activity in adulthood: the 1970 British cohort study. Pediatrics, 119, e38e45. doi:10.1542/peds.2006-1831.CrossRefGoogle ScholarPubMed
Bourne, V. J., Fox, H. C., Deary, I. J. and Whalley, L. J. (2007). Does childhood intelligence predict variation in cognitive change in later life? Personality and Individual Differences, 42, 15511559.CrossRefGoogle Scholar
Carroll, J. B. (1993). Human Cognitive Abilities: A Survey of Factor Analytic Studies. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Chiuve, S. E.et al. (2012). Alternative dietary indices both strongly predict risk of chronic disease. Journal of Nutrition, 142, 10091018. doi:10.3945/jn.111.157222.CrossRefGoogle ScholarPubMed
Corley, J., Gow, A. J., Starr, J. M. and Deary, I. J. (2010a). Is body mass index in old age related to cognitive abilities? The Lothian Birth Cohort 1936 Study. Psychology and Aging, 25, 867875. doi:10.1037/a0020301CrossRefGoogle ScholarPubMed
Corley, J.et al. (2010b). Caffeine consumption and cognitive function at age 70: the Lothian Birth Cohort 1936 Study. Psychosomatic Medicine, 72, 206214, doi:10.1097/PSY.0b013e3181c92a9c.CrossRefGoogle ScholarPubMed
Corley, J.et al. (2011). Alcohol intake and cognitive abilities in old age: the Lothian Birth Cohort 1936 Study. Neuropsychology, 25, 166175. doi:10.1037/a0021571.CrossRefGoogle ScholarPubMed
Cox, B. D., Huppert, F. A. and Whichelow, M. J. (1993). The Health and Lifestyle Survey: Seven Years On. Aldershot, UK: Dartmouth.Google Scholar
Deary, I. J. and Johnson, W. (2010). Intelligence and education: causal perceptions drive analytic processes and therefore conclusions. International Journal of Epidemiology, 39, 13621369. doi:10.1093/ije/dyq072.CrossRefGoogle ScholarPubMed
Deary, I. J., Whalley, L. J., Lemmon, H., Crawford, J. R. and Starr, J. M. (2000). The stability of individual differences in mental ability from childhood to old age: follow up of the 1932 Scottish Mental Survey. Intelligence, 28, 4955. doi:10.1016/S0160-2896(99)00031-8.CrossRefGoogle Scholar
Deary, I. J., Der, G. and Ford, G. (2001). Reaction times and intelligence differences: a population-based cohort study. Intelligence, 29, 389399. doi:10.1016/S0160-2896(01)00062-9.CrossRefGoogle Scholar
Deary, I. J.et al. (2004a). The functional anatomy of inspection time: an event-related fMRI study. NeuroImage, 22, 14661479. doi:10.1016/j.neuroimage.2004.03.047.CrossRefGoogle ScholarPubMed
Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J. and Fox, H. C. (2004b). The impact of childhood intelligence on later life: following up the Scottish Mental Surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130147. doi:10.1037/0022-3514.86.1.130.CrossRefGoogle ScholarPubMed
Deary, I. J.et al. (2005). Intergenerational social mobility and mid-life status attainment: influences of childhood intelligence, childhood social factors, and education. Intelligence, 33, 455472. doi:10.1016/j.intell.2005.06.003.CrossRefGoogle Scholar
Deary, I. J.et al. (2007). The Lothian Birth Cohort 1936: a study to examine the influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatrics, 7, 28. doi:10.1186/1471-2318-7-28.CrossRefGoogle ScholarPubMed
Deary, I. J., Whalley, L. J. and Starr, J. M. (2009). A Lifetime of Intelligence: Follow-up Studies of the Scottish Mental Surveys of 1932 and 1947. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Deary, I. J., Penke, L. and Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201211. doi:10.1016/j.neurobiolaging.2010.04.032.CrossRefGoogle ScholarPubMed
DiBello, J. R., Kraft, P., McGarvey, S. T., Goldberg, R., Campos, H. and Baylin, A. (2008). Comparison of 3 methods for identifying dietary patterns associated with risk of disease. American Journal of Epidemiology, 168, 14331443. doi:10.1093/aje/kwn274.CrossRefGoogle ScholarPubMed
Drogan, D., Hoffmann, K., Schulz, M., Bergmann, M. M., Boeing, H. and Weikert, C. (2007). A food pattern predicting prospective weight change is associated with risk of fatal but not with nonfatal cardiovascular disease. Journal of Nutrition, 137, 19611967.CrossRefGoogle Scholar
Féart, C.et al. (2009). Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. Journal of the American Medical Association, 302, 638648. doi:10.1001/jama.2009.1146.CrossRefGoogle ScholarPubMed
Féart, C., Samieri, C. and Barberger-Gateau, P. (2010). Mediterranean diet and cognitive function in older adults. Current Opinion in Clinical Nutrition and Metabolic Care, 13, 1418. doi:10.1097/MCO.0b013e3283331fe4.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Fung, T. T., McCullough, M., van Dam, R. M. and Hu, F. B. (2007). A prospective study of overall diet quality and risk of type 2 diabetes in women. Diabetes Care, 30, 17531757. doi:10.2337/dc06-2581.CrossRefGoogle ScholarPubMed
Gow, A. J.et al. (2011). Stability and change in intelligence from age 11 to ages 70, 79, and 87: the Lothian Birth Cohorts of 1921 and 1936. Psychology and Aging, 26, 232240. doi:10.1037/a0021072.CrossRefGoogle Scholar
Gow, A. J., Corley, J., Starr, J. M. and Deary, I. J. (2012a). Reverse causation in activity-cognitive ability associations: the Lothian Birth Cohort 1936. Psychology and Aging, 27, 250255. doi:10.1037/a0024144.CrossRefGoogle ScholarPubMed
Gow, A. J., Mortensen, E. L. and Avlund, K. (2012b). Activity participation and cognitive aging from age 50 to 80 in the Glostrup 1914 cohort. Journal of the American Geriatrics Society, 60, 18311838. doi:10.1111/j.1532-5415.2012.04168.x.CrossRefGoogle ScholarPubMed
Gu, Y. and Scarmeas, N. (2011). Dietary patterns in Alzheimer's disease and cognitive aging. Current Alzheimer Research, 8, 510519.CrossRefGoogle ScholarPubMed
Gu, Y., Nieves, J. W., Stern, Y., Luchsinger, J. and Scarmeas, N. (2010). Food combination and Alzheimer's disease risk: a protective diet. Archives of Neurology, 67, 699706. doi:10.1001/archneurol.2010.84.CrossRefGoogle Scholar
Hamer, M., McNaughton, S. A., Bates, C. J. and Mishra, G. D. (2010). Dietary patterns, assessed from a weighed food record, and survival among elderly participants from the United Kingdom. European Journal of Clinical Nutrition, 64, 853861. doi:10.1038/ejcn.2010.93.CrossRefGoogle ScholarPubMed
Hare-Bruun, H., Togo, P., Andersen, L. B. and Heitmann, B. L. (2011). Adult food intake patterns are related to adult and childhood socioeconomic status. Journal of Nutrition, 141, 928934. doi:10.3945/jn.110.133413.CrossRefGoogle ScholarPubMed
Hoffmann, K., Zyriax, B. C., Boeing, H. and Windler, E. (2004). A dietary pattern derived to explain biomarker variation is strongly associated with the risk of coronary artery disease. American Journal of Clinical Nutrition, 80, 633640.CrossRefGoogle ScholarPubMed
Holdnack, J. A. (2001). WTAR: Wechsler Test of Adult Reading Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Hughes, T. F.et al. (2010). Midlife fruit and vegetable consumption and risk of dementia in later life in Swedish twins. American Journal of Geriatric Psychiatry, 18, 413420.CrossRefGoogle ScholarPubMed
Huijbregts, P. P.et al. (1998). Dietary patterns and cognitive function in elderly men in Finland, Italy and The Netherlands. European Journal of Clinical Nutrition, 52, 826831.CrossRefGoogle ScholarPubMed
Jia, X., Craig, L. C., Aucott, L. S., Milne, A. C. and McNeill, G. (2008). Repeatability and validity of a food frequency questionnaire in free-living older people in relation to cognitive function. Journal of Nutrition, Health and Aging, 12, 735741. doi:10.1007/BF03028622.CrossRefGoogle ScholarPubMed
Johnson, W., Corley, J., Starr, J. M. and Deary, I. J. (2011). Psychological and physical health at age 70 in the Lothian Birth Cohort 1936: links with early life IQ, SES, and current cognitive function and neighborhood environment. Health Psychology, 30, 111. doi:10.1037/a0021834.CrossRefGoogle ScholarPubMed
Kesse-Guyot, E., Andreeva, V. A., Jeandel, C., Ferry, M., Hercberg, S. and Galan, P. (2012). A healthy dietary pattern at midlife is associated with subsequent cognitive performance. Journal of Nutrition, 142, 909915. doi:10.3945/jn.111.156257.CrossRefGoogle ScholarPubMed
Kubicka, L., Matejcek, Z., Dytrych, Z. and Roth, Z. (2001). IQ and personality traits assessed in childhood as predictors of drinking and smoking behaviour in middle-aged adults: a 24-year follow-up study. Addiction, 96, 16151628. doi:10.1046/j.1360-0443.2001.961116158.x.Google ScholarPubMed
Laitinen, M. H.et al. (2006). Fat intake at midlife and risk of dementia and Alzheimer's disease: a population-based study. Dementia and Geriatric Cognitive Disorders, 22, 99107.CrossRefGoogle ScholarPubMed
Laurin, D., Masaki, K. H., Foley, D. J., White, L. R. and Launer, L. J. (2004). Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study. American Journal of Epidemiology, 159, 959967.CrossRefGoogle ScholarPubMed
Liu, L., Nettleton, J. A., Bertoni, A. G., Bluemke, D. A., Lima, J. A. and Szklo, M. (2009). Dietary pattern, the metabolic syndrome, and left ventricular mass and systolic function: the multi-ethnic study of atherosclerosis. American Journal of Clinical Nutrition, 90, 362368. doi:10.3945/ajcn.2009.27538.CrossRefGoogle ScholarPubMed
Luciano, M.et al. (2009). Cognitive ability at age 11 and 70 years, information processing speed, and APOE variation: the Lothian Birth Cohort 1936 Study. Psychology and Aging, 24, 129138. doi:10.1037/a0014780.CrossRefGoogle ScholarPubMed
Manolio, T. A., Olson, J. and Longstreth, W. T. (2003). Hypertension and cognitive function: pathophysiologic effects of hypertension on the brain. Current Hypertension Reports, 5, 255261. doi:10.1007/s11906-003-0029-6.CrossRefGoogle ScholarPubMed
Masson, L. F.et al. (2003). Statistical approaches for assessing the relative validity of a food-frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutrition, 6, 313321. doi:10.1079/PHN2002429.CrossRefGoogle ScholarPubMed
McCullough, M. L.et al. (2002). Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. American Journal of Clinical Nutrition, 76, 12611271.CrossRefGoogle ScholarPubMed
McGurn, B.et al. (2004). Pronunciation of irregular words is preserved in dementia, validating premorbid IQ estimation. Neurology, 62, 11841186.CrossRefGoogle ScholarPubMed
McGurn, B., Deary, I. J. and Starr, J. M. (2008). Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology, 71, 10511056.CrossRefGoogle ScholarPubMed
McNeill, G., Winter, J. and Jia, X. (2009). Diet and cognitive function in later life: a challenge for nutritional epidemiology. European Journal of Clinical Nutrition, 63, S3337. doi:10.1038/ejcn.2011.2.CrossRefGoogle Scholar
McNeill, G.et al. (2011). Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. European Journal of Clinical Nutrition, 65, 619626.CrossRefGoogle Scholar
Mõttus, R., McNeill, G., Jia, X., Craig, L. C., Starr, J. M. and Deary, I. J. (2011). The associations between personality, diet and body mass index in older people. Health Psychology, Sep 19 doi:10.1037/a0025537 (epub ahead of print).CrossRefGoogle Scholar
Murray, C., Johnson, W., Wolf, M. S. and Deary, I. J. (2011). The association between cognitive ability across the lifespan and health literacy in old age: the Lothian Birth Cohort 1936. Intelligence, 39, 178187. doi:10.1016/j.intell.2011.04.001.CrossRefGoogle Scholar
Nelson, H. E. and Willison, J. R. (1991). National Adult Reading Test (NART) Test Manual (Part II). Windsor, UK: NFER-Nelson.Google Scholar
Office of Population Censuses and Surveys. (1980). Classification of Occupations 1980. London, UK: Her Majesty's Stationery Office.Google Scholar
Samieri, C., Jutand, M. A., Feart, C., Capuron, L., Letenneur, L. and Barberger-Gateau, P. (2008). Dietary patterns derived by hybrid clustering method in older people: association with cognition, mood, and self-rated health. Journal of the American Dietetic Association, 108, 14611471. doi:10.1016/j.jada.2008.06.437.CrossRefGoogle ScholarPubMed
Scarmeas, N., Stern, Y., Tang, M. X., Mayeux, R. and Luchsinger, J. A. (2006a). Mediterranean diet and risk for Alzheimer's disease. Annals of Neurology, 59, 912921. doi:10.1002/ana.20854.CrossRefGoogle ScholarPubMed
Scarmeas, N., Stern, Y., Mayeux, R. and Luchsinger, J. A. (2006b). Mediterranean diet, Alzheimer disease, and vascular mediation. Archives of Neurology, 63, 17091717. doi:10.1001/archneur.63.12.noc60109.CrossRefGoogle ScholarPubMed
Scarmeas, N.et al. (2009a). Physical activity, diet, and risk of Alzheimer disease. Journal of the American Medical Association, 302, 627637. doi:10.1001/jama.2009.1144.CrossRefGoogle ScholarPubMed
Scarmeas, N., Stern, Y., Mayeux, R., Manly, J. J., Schupf, N. and Luchsinger, J. A. (2009b). Mediterranean diet and mild cognitive impairment. Archives of Neurology, 66, 216225. doi:10.1001/archneurol.2008.536.Google ScholarPubMed
Schaie, K. W. (1996). Intellectual Development in Adulthood: The Seattle Longitudinal Study. New York, NY: Cambridge University Press.Google Scholar
Scottish Council for Research in Education (SCRE). (1933). The Intelligence of Scottish Children: A National Survey of an Age Group. London, UK: University of London Press.Google Scholar
Scottish Council for Research in Education (SCRE). (1949). The Trend of Scottish Intelligence: A Comparison of the 1947 and 1932 Surveys of the Intelligence of Eleven-Year-Old Pupils. London, UK: University of London Press.Google Scholar
Shatenstein, B.et al. (2012). Diet quality and cognition among older adults from the NuAge study. Experimental Gerontology, 47, 353360. doi:10.1016/j.exger.2012.02.002.CrossRefGoogle ScholarPubMed
Tangney, C. C., Kwasny, M. J., Li, H., Wilson, R. S., Evans, D. A. and Morris, M. C. (2011). Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. American Journal of Clinical Nutrition, 93, 601607. doi:10.3945/ajcn.110.007369.CrossRefGoogle Scholar
Taylor, M. D.et al. (2003). Childhood mental ability and smoking cessation in adulthood: prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studies. Journal of Epidemiology and Community Health, 57, 464465. doi:10.1136/jech.57.6.464.CrossRefGoogle ScholarPubMed
Wardle, J., Parmenter, K. and Waller, J. (2000). Nutrition knowledge and food intake. Appetite 34, 269275. doi:10.1006/appe.1999.0311.CrossRefGoogle ScholarPubMed
Wechsler, D. (1998a). WAIS–IIIUK Administration and Scoring Manual. London, UK: Psychological Corporation.Google Scholar
Wechsler, D. (1998b). WMS–IIIUK Administration and Scoring Manual. London, UK: Psychological Corporation.Google Scholar
Wengreen, H. J., Neilson, C., Munger, R. and Corcoran, C. (2009). Diet quality is associated with better cognitive test performance among aging men and women. Journal of Nutrition, 139, 19441949. doi:10.3945/jn.109.106427.CrossRefGoogle ScholarPubMed
Whalley, L. J., Starr, J. M., Athawes, R., Hunter, D., Pattie, A. and Deary, I. J. (2000). Childhood mental ability and dementia. Neurology, 10, 14551459.CrossRefGoogle Scholar
Supplementary material: File

Corley Supplementary Material

Appendix

Download Corley Supplementary Material(File)
File 20.8 KB