Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T21:42:24.526Z Has data issue: false hasContentIssue false

Transaminases during development and aging of the bruchid, Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae)

Published online by Cambridge University Press:  19 September 2011

Surinder Pal Kaur
Affiliation:
Department of Zoology, Punjabi University, Patiala-147002, India
Dalbinder Singh Sidhu*
Affiliation:
Department of Zoology, Punjabi University, Patiala-147002, India
S. S. Dhillon
Affiliation:
Department of Zoology, Punjabi University, Patiala-147002, India
Nirmal Kumar
Affiliation:
Department of Zoology, Punjabi University, Patiala-147002, India
*
* All correspondence should be addressed to this author.
Get access

Abstract

The activity of glutamate-pyruvate transaminase (GPT) increases regularly as the fourth instar larva of Zabrotes subfasciatus develops into prepupa. On the other hand, glutamate-oxaloacetate transaminase (GOT) activity increases significantly (P < 0.05) during the first 12 hr, and then remains at a sufficiently constant level during the subsequent development of this larval instar except at 36 hr of development. However, at the time of prepupation, the GOT and GPT-activities show a decline, which is subsequently followed by an increase during the rest of the prepupal development. The activity of GOT is quite high during the early pupal life, i.e. up to 120 hr. On the other hand, GPT-activity falls significantly (P < 0.05) during the first 24 hr of pupal life and rise up to 120 hr during pupal development. Once again, in the late pupal development, the transaminases remain very active on account of the faster rate of histogenesis. During early adult life, the GOT and GPT are still active, as the early part of adult life of the insect is physiologically quite vigorous and accordingly the energy requirements of the body at this stage are intense. Subsequently, there occurs a regular attenuation of the activities of both of the transaminases in the aging bruchid.

Résumé

L'activité des glutamate-pyruvate transaminase (GPT) augment régulièrement à measure que la quatrième instar larva de Zabrotes subfasciatus développe en prépupa. Au contraire, l'activité du glutamate-oxaloacetate transaminase (GOT) augmente significativement pendant les premieres 12 hr et ensuite reste a un inveau suffisament constant pendant le dévelopment du instar larva qui suive, sauf à la 36e hr du dévelopment. Pourtant au moment de la prépupation, les activités des GOT et GPT montrent une dimunition qui est ensuite suívi d'une augmentation pendant le reste due dévelopment prépupa. L'activité de GOT est assez élevé pendant le début de l'âge pupal, l'est à dire jusqu'à la 120e hr. Au contraire, l'activité GPT décrôit significativement (P < 0.05) pendant les premiéres 24 hr de la vie pupale qui pourtant continue à augmente jusqu'a la 120e hr du développment pupale. Encore, pendant le développement pupal tardif les transaminases restent très actifs à cause ce cadence plus rapide de histogenesis. Pendant le commencement de l'àge adulte, le GOT et le GPT sont encore actifs, puis que la première partie de la vie adulte de l'insecte est assez vigoureuse et en conséquence les besoins de l'energie du corps en ce moment sont intenses. Ensuite, il se produit une atténuation régulière des activités des deux transaminases dans les bruchids vieillissants.

Type
Research Article
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arora, G. L. (1977) Taxonomy of the bruchids (Coleoptera) of North-West India. Orient. Insects 7, 92.Google Scholar
Ashmore, J., Wagle, S. P. and Uete, T. (1964) Studies on gluconeogenesis. In Advances in Enzyme Regulation (Edited by Weber, G.), Vol. 2, pp. 101114. Pergamon Press, Oxford.Google Scholar
Bergner, H., Muenchow, H. and Wirthgen, S. (1968) Correlation between protein nutrition, thyroid secretion rate, and the activities of certain enzymes. Acta biol. med. germ. 21, 683x–686.Google Scholar
Chang, Y. Y. H., Frazier, J. L. and Heitz, J. R. (1979) Time course of enzyme development in the boll weevil, Anthonomus grandis. Comp. Biochem. Physiol. 62B, 4550.Google Scholar
Chen, P. S. (1966) Amino acid and protein metabolism in insect development. In Advances in Insect Physiology, Vol. 3, pp. 53132. Academic Press, New York.Google Scholar
Cohen, P. P. (1951) In The Enzyme (Edited by Summer, J. B. and Myrback, K.), Vol. I, Chap. 2, pp. 10401067. Academic Press, New York.Google Scholar
Gilbert, L. I. (1967) Lipid metabolism and function of insects. Adv. Insect Physiol. 4, 69211.CrossRefGoogle Scholar
Kaur, S. P. (1984) Studies on the biochemical changes related to the metamorphosis and adult life of Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae). Ph.D. thesis, Punjabi University, Patiala.Google Scholar
Knox, W. E. and Greengard, O. (1965) The regulation of some enzymes of nitrogen metabolism—an introduction to enzyme physiology. In Advances in Enzyme Regulation (Edited by Weber, G.), Vol. 3, pp. 247313. Press, Oxford.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Mordue, W. and Goldsworthy, G. J. (1973) Transaminase levels and uric acid production in adult locusts. Insect Biochem. 3, 419–27.CrossRefGoogle Scholar
Nimni, M. E., Horn, D. and Barette, L. A. (1962) Dietary composition and tissue protein synthesis. II. Tryptophan toxicity and amino acid deficiency in collagen synthesis. J. Nutr. 78, 133138.CrossRefGoogle ScholarPubMed
Nohel, P. and Slama, K. (1972) Effect of juvenile hormone analogue on glutamate—pyruvate transaminase activity in the bug, Pyrrhocoris apterus. Insect Biochem. 2, 5866.CrossRefGoogle Scholar
Pant, R. and Morris, I. D. (1972) A comparative study on the variation of aminotransferase activity and its total free amino acids in the fat body, haemolymph and intestine and haemolymph protein content in Philosamia ricini during larval-pupal development. Indian J. Biochem. Biophys. 9, 199202.Google ScholarPubMed
Pant, R. and Kumar, S. (1980) Significance of some enzymes and metabolites during aging of the dipteran fleshfly, Sarcophaga ruficornis. Curr. Sci. 49, 1013.Google Scholar
Pant, R. and Pandey, K. N. (1980) Variations in different biochemical parameters in the fat body of Antheraea mylitta (Tasar silkworm). Indian J. exp. Biol. 18, 537539.Google Scholar
Reitman, S. and Frankel, S. (1957) A colorimetric method for the determination of serum glutamic oxaloacetic acid and glutamic pyruvic transaminases. Am. J. din. Path. 28, 5663.CrossRefGoogle Scholar
Sidhu, D. S. (1982) Biochemical investigations on the postembryonic development of Chilomenes sexmaculata Fabr. (Coleoptera: Coccinellidae). Ph.D. thesis, Punjabi University, Patiala.Google Scholar
Wergedal, J. E., Ku, Y. and Harper, A. E. (1964) Influence of protein intake on the catabolism of ammonia and glycine in vivo. In Advances in Enzyme Regulation (Edited by Weber, G.), Vol. 2, pp. 289310. Pergamon Press, Oxford.Google Scholar