Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T15:41:43.343Z Has data issue: false hasContentIssue false

Ticks and tick-borne parasites associated with indigenous cattle in Didtuyura Ranch, southern Ethiopia

Published online by Cambridge University Press:  19 September 2011

G. Solomon
Affiliation:
Shola Veterinary Laboratory, P.O. Box 3431, Addis Ababa, Ethiopia
G. P. Kaaya
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
F. Gebreab
Affiliation:
Faculty of Veterinary Medicine, Addis Ababa University, P.O. Box 34, Debrezeit, Ethiopia
T. Gemetchu
Affiliation:
Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
G. Tilahun
Affiliation:
Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
Get access

Abstract

Tick populations were monitored between October 1991 and September 1992 at monthly intervals on 10 Boran (Bos indicus) heifers at Didtuyura ranch, Yabelo district, Ethiopia. Twelve different tick species in four genera were identified from a total of 16 026 specimens collected. Of all the ticks collected, Rhipicephalus spp. constituted 84.7%, Amblyomma spp. 9.9%, Boophilus spp. 4.8% and Hyalomma spp. 0.24%. The ventral parts of cattle were found to be the most favoured feeding sites for most of the ticks collected. The size ranges of the standard ticks collected were 4–8 mm; 9–16 mm; 4–8 mm and 8–13 mm for R. pulchellus, A. variegatum, B. decoloratus and A. gemma, respectively, while their respective male to female sex ratios were 2:1; 3.2:1; 1:5.4 and 2.6:1. Packed cell volume (PCV) values of blood samples taken from 600 cattle were monitored monthly during the study period. There was a reduction in PCV during the dry season of the year but generally the values were within the normal range of 32–40%. The parasites causing anaplasmosis, babesiosis and theileriosis (T. mutans) were detected by microscopic examination of blood smears and serologically (ELISA) at seroprevalence rates of 94.68%, 77.19% and 30.9% respectively.

Résumé

Au ranch de Didtuyura, district de Yabelo en Ethiopie, les populations des tiques ont fait l'objet de suivi sur 10 génisses de zébu (Bos indicus), entre septembre 1991 et octobre 1992, avec un mois d'intervalle entre les observations. A partir de 16.026 specimens de tiques collectées, on a identifié douze espèces différentes, réparties en quatre genres. De toute la collection des tiques échantillonnées on a dénombré 84,7% de Rhipicephalus spp., 9,9% d'Amblyoma spp., 4,8 % de Boophillus spp. et 0,24% de Hyalomma spp. Les parties de la région ventrale du corps des animaux constituaient des sites les plus préférés de prise de repas pour la plupart des tiques collectées. La taille des tiques normales se rangeait respectivement entre 4–8 mm; 9–16 mm; 4–8mm et 8–13mm pour R. pulchellus, A. variegatus, B. decoloratus et A. gemma, tandis que le rapport respectif du nombre de mâles par rapport aux femelles par espèce, était de 2:1; 3,2:1; 1:5,4 et de 2,6:1. Le volume du culot plasmatique de sang prélevé sur 600 animaux était aussi mesuré mensuellement pendant toute la durée de l'étude. Il a été constaté une diminution du volume du culot plasmatique pendant la saison sèche mais ces valeurs se situaient généralement dans la fourchette des valeurs normales qui sont de l'ordre de 32–40%. Les examens microscopiques par frottis de sang et sérologiques par méthodes (ELISA) ont révélé 94,68%; 77,19% et 30,9% de cas de séropositivité pour l'anaplasmose, la babésiose et la théilériose (T. mutans) respectivement.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, R. H. and Petney, T. N. (1981) Competition for sites of attachment to hosts in three parasitic species of reptile tick. Ecology 51, 227232.Google Scholar
Andrews, R. H., Petney, T. N. and Bull, C. M. (1982) Niche changes between parasite populations. An example from ticks of reptiles. Oecologia (Beri.) 55, 7778.Google Scholar
Dalgliesh, R. J., Jorgensen, W. K., de Vos, A. J. (1990) Australian frozen vaccines for the control of babesiosis and anaplasmosis in cattle. A review. Trop. Anim. Hlth. Prod. 22, 4452.Google Scholar
De Castro, J. J. (1994) Tick survey in Ethiopia. A survey of tick species in western Ethiopia including previous findings and recommendation for further tick survey in Ethiopia. UNDP/FAO, Rome.Google Scholar
Dejenu, G. (1988) A preliminary survey of ticks on domestic animals in Bale administrative region. DVM thesis, Faculty of Veterinary Medicine, Addis Ababa University, Debrezeit, Ethiopia.Google Scholar
Eshetu, M. (1988) Survey of geographical distribution of ticks in Gondar awraja. DVM thesis. Faculty of Veterinary Medicine, Addis Ababa University, Debrezeit, Ethiopia.Google Scholar
Evans, G. O. (1952) The distribution of Ixodes ricinus (L) on the body of cattle and sheep. Bull. Ent. Res. 41, 709723.Google Scholar
Feseha, G. (1983) Notes on ticks species and tick-borne diseases of domestic animals in Ethiopia. DVM thesis, Addis Ababa University, Faculty of Veterinary Medicine, Debrezeit, Ethiopia.Google Scholar
Fivaz, B. H., Waal, D. T. and Lander, K. (1992) Indigenous and crossbred cattle. A comparison of resistance to ticks and implications for strategic control in Zimbabwe. Trop. Anim. Hlth. Prod. 24, 8189.Google Scholar
Gulilat, A. (1987) Survey of ticks on domestic animals in Hararge Administrative region. DVM thesis, Faculty of Veterinary Medicine, Addis Ababa University, Debrezeit, Ethiopia.Google Scholar
Hoogstraal, H. (1956) African Ixodoidea, 1. Ticks of the Sudan. Bureau of Medicine and Survey, Department of the Navy, Washington DC.Google Scholar
Jewaro, A. (1986) A survey of ticks and tick-borne diseases in Gamogof a administrative region. DVM, thesis, Faculty of Veterinary Medicine, Addis Ababa University, Debrezeit, Ethiopia.Google Scholar
Kaiser, M. N. (1987) Consultancy report for Eth./83/023, “Tick survey project” on tick taxonomy and biology. FAO, Rome.Google Scholar
Kaiser, M. N., Bourne, R. W., Gorissen, L. and Floyd, R. B. (1988) Population dynamics of ticks on Ankole cattle in 5 ecological zones in Burundi and strategies for their control. Prev. Vet. Med. 6, 199222.Google Scholar
Kaiser, M. N., Sutherst, R. W. and Bourne, A. S. (1982) Relationship between ticks and Zebu cattle in Southern Uganda. Trop. Anim. Hlth. Prod. 14, 6374.Google Scholar
Katende, J. M., Goddieries, B. M., Morzaria, S. P., Nkonge, C. G. and Musoke, A. J. (1990) Identification of a Theileria mutans specific antigen for use in the antibody and antigen detection ELISA. Parasite Immunol 12, 419433.Google Scholar
Latif, A. A. and Pegram, R. G. (1992) Naturally acquired host resistance in tick control in Africa. Insect Sci. Applic. 13, 505513.Google Scholar
Macleod, J., Colbo, M. H., Madbouly, M. H. and Mwanaumo, B. (1977) Ecological studies of Ixodid ticks in Zambia. III. Seasonal activity and attachment sites on cattle, with notes on other hosts. Bull. Ent. Res. 67, 161173.Google Scholar
Manueri, K. K. and Tilahun, J. (1991) A survey of ectoparasites of cattle in Harar and Diredawa Districts, Harargahe administrative region of Ethiopia. Bull. Anim. Hlth. Prod. Afr. 39, 1524.Google Scholar
Mathysee, J. E. and Colbo, M. H. (1987) Ixodid ticks of Uganda. Entomol. Soc. Am., College parad. MD.Google Scholar
Mohamed, A. N. (1977) The seasonal incidences of ixodid ticks of cattle in Northern Nigeria. Bull. Anim. Hlth. Prod. Afr. 24, 211342.Google Scholar
Morel, P. C. (1980) Study of Ethiopian ticks (Acarina: Ixodidae). Ministry of Foreign Affairs, France, IFMVT.Google Scholar
Morzaria, S., Ketende, J., Kairo, A., Nene, V. and Musoke, A. (1992) New methods for the diagnosis of Babesia bigemina infection. Memb. Inst. Osvaldo Cruz, Rio de Janeiro, Vol. 87, Suppl. 11, 201205.Google Scholar
Osman, O. M., Hussein, A. M., Ahmed, N. and Abdulla, H. S. (1982) Ecological studies on ticks of Kordof an region. Sudan Bull. Anim. Hlth. Prod. 30, 4553.Google Scholar
Pegram, R. G. and Lemche, J. (1985) Observations on the efficacy of ivermectin in the control of cattle ticks in Zambia. Vet. Res. 117, 551554.Google Scholar
Pegram, R. G., Hoogstral, H. H. and Wassef, H. V. (1981) Ticks of Ethiopia. I. Distribution, ecology and the host relationships of tick species infesting livestock. Bull. Ent. Res. 71, 339359.Google Scholar
Sebsibe, B. (1988) A preliminary survey of tick distribution in the southern Sidamo. DVM thesis, Faculty of Veterinary Medicine, Addis Ababa University, Debrezeit, Ethiopia.Google Scholar
Sutherst, R. W., Wharton, R. H. and útech, K. B. W. (1978) Guide to studies on tick ecology. Commonwealth Scientific and Industrial Research Organisation. Division of Entomology, Australia. Technical Bulletin No. 14, Melbourne, 59 pp.Google Scholar
Tatchell, R. J. and Easton, E. (1986) Tick ecological studies in Tanzania. Bull. Ent. Res. 76, 229246.Google Scholar
Walker, J. B. (1974) The Ixodid Ticks of Kenya. A Review of Present Knowledge of Their Hosts and Distribution. 220 pp. Commonwealth Institute of Entomology, London.Google Scholar
Wilkinson, P. R. (1972) Sites of attachment of “Praire” and “Montane” Dermacentor andersoni (Acarina: Ixodidae) on cattle, J. Med. Entomol. 9, 133137.Google Scholar