Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T15:41:22.022Z Has data issue: false hasContentIssue false

Taste sensilla responses to limonoids, natural insect antifeedants

Published online by Cambridge University Press:  19 September 2011

S. M. Waladde
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
A. Hassanali
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
S. A. Ochieng
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
Get access

Abstract

Limonoids such as deoxylimonin, obacunone and pedoniti are known to have antifeedant effects against some lepidopteran pests. However, there is no electrophysiological data showing the effect these compounds have on taste receptor cells. This information gap is due to the fact that limonoids are insoluble in water and this makes it difficult to apply the tip-recording technique in an electrophysiological bioassay of limonoids. This problem was solved by dissolving the limonoids in a mixture of 50 % tetrahydrof uran and 50 % aqueous NaCl. Limonoids and sucrose so dissolved were used to investigate responses of Eldana saccharina maxillary styloconic sensilla. The solvent mixture did not appear to damage the taste receptor cells and the taste receptor responses to solutes dissolved in that solvent were reproducible. Sucrose stimulated a cell in the medial as well as in the lateral styloconic sensilla. Deoxylimonin alone stimulated a cell in the medial sensillum but not in the lateral sensillum. When presented with sucrose, deoxylimonin inhibited the sugar receptor cell and this was also true for obacunone.

Résumé

Les limonoïdes tels que la déoxylimonine, l'obacunone et la pédonine sont connus pour leurs propriétés désappéntantes sur certains lépidoptères ravageurs. Cependant il n'existe aucune donnée électrophysiologique mettant en évidence l'effet de ces substances sur les cellules des récepteurs gustatifs. Cette lacune provient de la difficulté d'appliquer une technique d'enregistrement distal avec les limonoides, qui sont insolubles dans l'eau. Les limonoides ont donc été dissouts dans un mélange de 50% tetrahydrofurane et 50% NaCl en solution aqueuse. On a observé la réponse des sensilles maxillaires stylo-coniques aux limonoides et an sucrose ainsi préparés. Le mélange de solvants ne semble pas endommager les cellules du récepteur gustati f et al réponse aux solutés est reproductible. Le sucrose stimule une cellule du sensille stylo-conique médian ainsi que du sensille stylo-conique latéral. La déoxylimonine seule ne stimule que le sensille médian. La déoxylimonine et l'obacunone inhibe la réponse au sucrose de la cellule réceptrice du sucre.

Type
Research Articles
Copyright
Copyright © ICIPE 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alford, A.R., Cullen, J.A., Storch, R.N. and Bentley, M.D. (1987) Antifeedant activity of limonin against the Colorado potato beetle (Coleoptera Chrysomelidae). J. econ. Entomol. 80, 599.CrossRefGoogle Scholar
Blaney, W.M. (1975) Behavioral and electrophysiological studies of taste discrimination by the maxillary palps of larvae of Locusta migratoria (L). J. exp. Biol. 62, 555569.CrossRefGoogle ScholarPubMed
Blaney, W.M. (1980) Chemoreception and food selection by locusts. Olfaction and Taste 7, 127130.Google Scholar
Blaney, W.M., Simmonds, S.J., Ley, S.V., Katz, R.B. (1987) An electrophysiological and behavioral study of insect antifeedant properties of natural and synthetic drimane-related compounds. Physiol. Entomol. 12, 281291.Google Scholar
Butterworth, J.H. and Morgan, E.D. (1968) Isolation of a substance that suppresses feeding in locusts. Chem. Comm. 2324.Google Scholar
Butterworth, J.H. and Morgan, E.D. (1971) Investigation of the locust feeding inhibition of the seeds of the neem tree, Azadirachta indica. J. Insect Physiol. 17, 969977.Google Scholar
Chapman, R.F. (1974) The chemical inhibition of feeding by phytophagous insects: a review. Bull. entomol. Res. 64, 339364.CrossRefGoogle Scholar
Dethier, V.G. (1972) Sensitivity of the contact chemoreceptors of the blowfly to vapours. Proc. Nat. Acad. Sci. USA 69, 21892192.CrossRefGoogle Scholar
Dethier, V.G. (1974) The specificity of the labellar chemoreceptors of the blowfly and the response to natural foods. J. Insect Physiol. 201, 8591869.Google Scholar
Dethier, V.G. (1980) Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents. Am. Nat. 115, 4566.CrossRefGoogle Scholar
Frazier, J.L. and Hanson, F.E. (1986) Electrophysiological recordings and analysis of insect chemosensory responses. In Insect Plant Interactions (Edited by Miller, J.R. and Miller, T.A.), pp. 285330. Springer-Verlag, N.Y.CrossRefGoogle Scholar
Haskell, P.T. and Schoonhoven, L.M. (1969) The function of certain mouthpart receptors in relation to feeding in Schistocerca gregaria and Locusta migratoria migratorioides. Entomol. exp. appl. 12, 433440.Google Scholar
Hassanali, A., Bentley, M.D., Ole Sitayo, E.N., Njoroge, P. E. W. and Yatagai, M. (1986) Studies on limonoid insect antifeedants. Insect Sci. Applic. 7, 495.Google Scholar
Hassanali, A., Bentley, M.D., Alexandra, M. Z. S., Williams, D.J., Shepherd, R.N. and Chapya, A.W. (1987) Pedonin, a spiro tetranortriterpenoid insect antifeedant from Harissonia abyssinica. Phytochemistry 26, 573575.Google Scholar
Hodson, E.S., Lettvin, J.Y. and Roeder, K.D. (1955) Physiology of a primary chemoreceptor unit. Science 122, 417418.Google Scholar
Ishikawa, S., Hirao, T. and Arai, N. (1969) Chemosensory basis of hostplant selection in the silkworm. Entomol. exp. appl. 12, 544554.CrossRefGoogle Scholar
Klocke, J.A. and Kubo, I. (1982) Citrus limonoids by-products as insect control agents. Entomol. exp. appl. 32, 299301.Google Scholar
Kraus, N., Cramer, R., Bokel, M., and Sawitzk, G. (1981) New insect antifeedants from Azadirachta indica and Melia azadirachta. Proc. 1st Neem Conf. Rottach-Egem, W. Germany June 1980. pp. 267277.Google Scholar
Ma, W.C. (1972) Dynamics of feeding responses in Pieris brassicae Linn. as a function of chemosensory input: a behavioral, ultrastructural and electrophysiological study. Meded. Landbouwhogesch. Wageningen 72/11, pp. 162.Google Scholar
Ma, W.C. (1977) Alteration of chemoreceptor function in armyworm larvae (Spodoptera exempta) by a plant-derived sesquiterpenoid and sulfhydryl reagent. Physiol. Entomol. 2, 199207.Google Scholar
Morita, H. and Takeda, K. (1959) Initiation of spike potentials in contact chemosensory hairs of insects II. The effect of electrical current on tarsal chemosensory hairs of Vanessa. J. Cell Comp. Physiol. 54, 177187.Google Scholar
Saxena, R.C., Justo, H.D. and Epino, P.B. (1984) Evaluation and utilization of neem cake against the rice brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). J. econ. Entomol. 77, 502507.CrossRefGoogle Scholar
Schneider, D. (1957) Electrophysiologiche Unterschugen von Chemo und mecharnorezeptoren der antenne des Seidenspinners, Bombyx mori L. Z. Vergl. Physiol. 40, 814.CrossRefGoogle Scholar
Schoonhoven, L.M. (1973) Plant recognition by lepidopterous larvae. Symp. R. Entomol. Soc. London 6, 8799.Google Scholar
Schoonhoven, L.M. (1982) Biological aspects of antifeedants. Ent. exp. appl. 31, 5769.Google Scholar
Schoonven, L.M. and Dethier, V.G. (1966) Sensory aspects of host plant discrimination by lepidopterous larvae. Arch. Neerl.Zool. 16, 497530.Google Scholar
Staedler, E. (1976) Sensory aspects of insect plant interactions. Proc. XV Int. Congr. Ent., Washington D. C. 1976, pp. 228243.Google Scholar
Sturkow, B. (1959) Ueber den Deschmackssinn und den Tastsinn von Leptinotarsa decemlineata Say (Chrysomelidae).. Z. vergl. Physiol. 42, 255302.CrossRefGoogle Scholar