Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:45:45.116Z Has data issue: false hasContentIssue false

Monotypic prey-mediated development, survival and life table attributes of a ladybird beetle Anegleis cardoni (Coleoptera: Coccinellidae) on different aphid species

Published online by Cambridge University Press:  09 September 2011

Omkar*
Affiliation:
Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow226 007, India
Gyanendra Kumar
Affiliation:
Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow226 007, India
Jyotsna Sahu
Affiliation:
Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow226 007, India
Get access

Abstract

Successful mass production of biocontrol agents is a prerequisite to their effective use in the field. Thus in the present study the suitability of ten aphid species of a ladybird beetle Anegleis cardoni (Weise) in terms of growth, development, survival and mortality life table attributes was assessed for the purpose of mass production. The study revealed that the developmental duration of the immature stages of A. cardoni was shortest when fed on Uroleucon compositae (Theobald), Rhopalosiphum maidis (Fitch), Hyadaphis coriandri (Das) and Myzus persicae (Sulzer) in comparison with other aphid species. Immature survival, development rate, adult weight and growth index were also highest when A. cardoni larvae were fed on these aphids, while lowest when fed on Hysteroneura setariae (Thomas) and Ceratovacuna silvestri (Takahashi). Any larva of A. cardoni did not reach adult stage when fed on Aphis nerii Boyer de Fonscolombe; therefore it may be considered as a toxic prey. Life table data revealed that the overall mortality prior to adult stage was lowest in U. compositae and highest in C. silvestri. The first instars suffered the highest mortality in comparison with other instars on all the aphid species tested. However, the life expectancy for each aphid species as prey revealed a continuous decline with the advancement of age. Thus among all the ten aphid species tested, U. compositae, R. maidis, H. coriandri and M. persicae were found equally suitable for mass production of A. cardoni.

Type
Research Paper
Copyright
Copyright © ICIPE 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afroze, S. (2000) Bioecology of the coccinellid Anegleis cardoni (Weise) (Coleoptera: Coccinellidae), an important predator of aphids, coccids and pseudococcids. Journal of Entomological Research 24, 5562.Google Scholar
Ahmed, U. A. M., Zuhua, S., Bashier, N. H. H., Muafi, K., Zhongping, H. and Yuling, G. (2006) Evaluation of insecticidal potentialities of aqueous extracts from Calotropis procera Ait. against Henosepilachna elaterii. Journal of Applied Sciences 6, 24662470.Google Scholar
Atlihan, R. and Chi, H. (2008) Temperature dependent development and demography of Scymnus subvillosus (Coleoptera: Coccinellidae) reared on Hyalopterus pruni (Homoptera: Aphididae). Journal of Economic Entomology 101, 325333.CrossRefGoogle ScholarPubMed
Awmack, C. S. and Leather, S. R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817844.CrossRefGoogle ScholarPubMed
Babu, A. (1999) Influence of prey species on feeding preference, post embryonic development and reproduction of Coccinella transversalis F. (Coleoptera: Coccinellidae). Entomon 24, 221228.Google Scholar
Balasubramani, V. and Swamiappan, M. (1998) Suitability of groundnut aphid Aphis craccivora Koch for rearing green lacewing Chrysoperla carnea Stephens. International Arachis Newsletter 18, 3031.Google Scholar
Bilde, T. and Toft, S. (1999) Prey consumption and fecundity of the carabid beetle Calathus melanocephalus on diets of three cereal aphids: high consumption rates of low quality prey. Pedobiologia 43, 422429.CrossRefGoogle Scholar
Chau, A. and Mackauer, M. (1997) Dropping of pea aphids from feeding site: a consequence of parasitism by the wasp, Nonoctonus paulensis. Entomologia Experimentalis et Applicata 43, 247252.CrossRefGoogle Scholar
Dixon, A. F. G. (1959) An experimental study of the searching behaviour of the predatory coccinellid beetle Adalia decempunctata (L). Journal of Animal Ecology 28, 259281.CrossRefGoogle Scholar
Dixon, A. F. G. (2000) Insect Predator–Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge. 268 pp.Google Scholar
Dixon, A. F. G. and Guo, Y. (1993) Egg and cluster size in ladybird beetles (Coleoptera: Coccinellidae): the direct and indirect effects of aphid abundance. European Journal of Entomology 90, 457463.Google Scholar
Evans, E. W. (1976) Mutual interference between predatory anthocorids. Ecological Entomology 1, 283286.CrossRefGoogle Scholar
Ferrer, A., Dixon, A. F. G. and Hemptinne, J.-L. (2008) Prey preference of ladybird larvae and its impact on larval mortality, some life-history traits of adults and female fitness. Bulletin of Insectology 61, 510.Google Scholar
Fischer, K., O'Brien, D. M. and Boggs, C. L. (2004) Allocation of larval and adult resources to reproduction in a fruit-feeding butterfly. Functional Ecology 18, 656663.CrossRefGoogle Scholar
Ghorpade, K. D. (1979) On some Coccinellidae (Coleoptera) attracted to light in India. Current Research 8, 113114.Google Scholar
Harper, G. L., King, R. A., Dodd, C. S., Harwood, J. D., Glen, D. M., Bruford, M. W. and Symondson, W. O. C. (2005) Rapid screening of predators for multiple prey DNA targets. Molecular Ecology 14, 819828.CrossRefGoogle ScholarPubMed
Harwood, J. D., Sunderland, K. D. and Symondson, W. O. C. (2004) Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field. Molecular Ecology 13, 35493560.CrossRefGoogle ScholarPubMed
Hodek, I. (1962) Essential and alternative food in insects, pp. 698699. In Proceedingss of the 11th International Congress of Entomology, Vienna 1960 (edited by Strouhal, H. and Beier, M.). Vol. 2. Academic Press, Inc., New York/London.Google Scholar
Hodek, I. (1993) Habitat and food specificity in aphidophagous predators. Biocontrol Science and Technology 3, 91100.CrossRefGoogle Scholar
Hodek, I. and Honek, A. (1996) Ecology of Coccinellidae. Kluwer Academic Publisher, Dordrecht. 464 pp.CrossRefGoogle Scholar
Honda, J. Y. and Luck, R. F. (1995) Scale morphology and its effects on the feeding behavior and biological control potential of Rhyzobius lophanthae (Coleoptera: Coccinellidae). Annals of the Entomological Society of America 88, 227236.CrossRefGoogle Scholar
Kalushkov, P. (1998) Ten aphid species (Sternorrhyncha: Aphididae) as prey for Adalia bipunctata (Coleoptera: Coccinellidae). European Journal of Entomology 95, 343349.Google Scholar
Lundgren, J. G. (2009) Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biological Control 51, 294305.CrossRefGoogle Scholar
Malcolm, S. B. (1992) Prey defence and predator foraging, pp. 458475. In Natural Enemies: The Population Biology of Predators, Parasites and Diseases (edited by Crawley, M. J.). Blackwell, Oxford.CrossRefGoogle Scholar
Michaud, J. P. (2000) Development and reproduction of ladybeetles (Coleoptera: Coccinellidae) on the citrus aphids Aphis spiraecola Patch and Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Biological Control 18, 287297.CrossRefGoogle Scholar
Michaud, J. P. (2005) On the assessment of prey suitability in aphidophagous Coccinellidae. European Journal of Entomology 102, 385390.CrossRefGoogle Scholar
Mills, N. J. (1981) Essential and alternative foods for some British Coccinellidae (Coleoptera). Entomologists' Gazette 32, 197202.Google Scholar
Morris, R. F. and Miller, C. A. (1954) The development of life tables for the spruce budworm. Canadian Journal of Zoology 32, 283301.CrossRefGoogle Scholar
Morsy, T. A., Rahem, M. A. and Allam, K. A. (2001) Control of Musca domestica third instar larvae by the latex of Calotropis procera (Family: Asclepiadaceae). Journal of the Egyptian Society of Parasitology 31, 107110.Google ScholarPubMed
Moser, S. E., Harwood, J. D. and Obrycki, J. J. (2008) Larval feeding on Bt hybrid and non-Bt corn seedlings by Harmonia axyridis (Coleoptera: Coccinellidae) and Coleomegilla maculata (Coleoptera: Coccinellidae). Environmental Entomology 37, 525533.Google ScholarPubMed
Murdoch, W. W., Avery, S. and Smyth, M. E. B. (1975) Switching in predatory fish. Ecology 56, 10941105.CrossRefGoogle Scholar
Omkar, (2006) Suitability of different foods for a generalist ladybird, Micraspis discolor (Coleoptera: Coccinellidae). International Journal of Tropical Insect Science 26, 3540.CrossRefGoogle Scholar
Omkar, and Bind, R. B. (1993) Records of aphid natural enemies complex of Uttar Pradesh I. The coccinellids. Journal of Advanced Zoology 14, 9699.Google Scholar
Omkar, and James, B. E. (2004) Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col., Coccinellidae). Journal of Applied Entomology 128, 150157.CrossRefGoogle Scholar
Omkar, , Sahu, J. and Kumar, G. (2010) Effect of prey quantity on reproductive and developmental attributes of a ladybird beetle, Anegleis cardoni. International Journal of Tropical Insect Science 30, 4856.CrossRefGoogle Scholar
Omkar, and Mishra, G. (2005) Preference-performance of a generalist predatory ladybird: a laboratory study. Biological Control 34, 187195.CrossRefGoogle Scholar
Omkar, and Srivastava, S. (2003) Influence of six aphid prey species on development and reproduction of a ladybird beetle, Coccinella septempunctata. BioControl 48, 379393.CrossRefGoogle Scholar
Omkar, , Kumar, G. and Sahu, J. (2009) Performance of a predatory ladybird beetle, Anegleis cardoni (Coleoptera: Coccinellidae) on three aphid species. European Journal of Entomology 106, 565572.CrossRefGoogle Scholar
Pervez, A. and Omkar, (2004) Prey-dependent life attributes of an aphidophagous ladybird beetle, Propylea dissecta (Coleoptera: Coccinellidae). Biocontrol Science and Technology 14, 385396.CrossRefGoogle Scholar
Phoofolo, M. W., Giles, K. L. and Elliot, N. C. (2007) Quantitative evaluation of suitability of the greenbug, Schizapis graminum and the bird cherry-oat aphid, Rhopalosiphum padi, as prey for Hippodamia convergens (Coleoptera: Coccinellidae). Biological Control 41, 2532.CrossRefGoogle Scholar
Price, P. W. (1997) Insect Ecology, 3rd edn.Wiley and Sons, New York, NY. 888 pp.Google Scholar
Puttarudriah, M. and Channabasavanna, G. P. (1953) Beneficial coccinellids of Mysore I. Indian Journal of Entomology 15, 8796.Google Scholar
Ramani, S., Poorani, J. and Bhumannavar, B. S. (2002) Spiralling whitefly, Aleurodicus dispersus in India. Biocontrol News and Information 23, 5562N.Google Scholar
Ramos, M. V., Bandeira, G. P., Freitas, C. D. T., Nogueira, N. A. P., Alencar, N. M. N., Sousa, P. A. S. and Carvalho, A. F. U. (2006) Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.). Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 101, 503510.CrossRefGoogle Scholar
Rana, J. S., Dixon, A. F. G. and Jarosik, V. (2002) Costs and benefits of prey specialization in a generalist insect predator. Journal of Animal Ecology 71, 1522.CrossRefGoogle Scholar
Roger, C., Coderre, D., Vigneault, C. and Boivin, G. (2001) Prey discrimination by a generalist coccinellid predator: effect of prey age or parasitism? Ecological Entomology 26, 163172.CrossRefGoogle Scholar
Sandlin, E. A. and Willig, M. R. (1993) Effects of age, sex, prior experience, and intraspecific food variation on diet composition of a tropical folivore (Phasmatodea: Phasmatidae). Environmental Entomology 22, 625633.CrossRefGoogle Scholar
Sarfraz, M., Dosdall, L. M. and Keddie, B. A. (2006) Diamondback moth host plant interactions: implications for pest management. Crop Protection 25, 625639.CrossRefGoogle Scholar
Schoener, T. W. (1969) Models of optimal size for solitary predators. The American Naturalist 103, 277313.CrossRefGoogle Scholar
Seiber, J. N., Nelson, C. J. and Lee, S. M. (1982) Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera. Phytochemistry 21, 23432348.CrossRefGoogle Scholar
Selander, R. K. (1966) Sexual dimorphism and differential niche utilization in birds. Condor 68, 113151.CrossRefGoogle Scholar
Sherratt, T. N. and Macdougall, A. D. (1995) Some population consequences of variation in preference among individual predators. Biological Journal of the Linnean Society 55, 93107.CrossRefGoogle Scholar
Southwood, T. R. E. (1978) Ecological Methods, with Particular Reference to the Study of Insect Populations, 2nd edn.Chapman and Hall, London. 524 pp.Google Scholar
Sundararaj, R. (2008) Distribution of predatory arthropod communities in selected sandal provenances of south India. Journal of Biopesticides 1, 8691.CrossRefGoogle Scholar
Vivan, L. M., Torres, J. B. and Veiga, A. F. S. L. (2003) Development and reproduction of a predatory stinkbug, Podisus nigrispinus, in relation to two different prey types and environmental conditions. Biocontrol 48, 155168.CrossRefGoogle Scholar
Wu, X.-H., Zhou, X.-R. and Pang, B.-P. (2010) Influence of five host plants of Aphis gossypii Glover on some population parameters of Hippodamia variegata (Goeze). Journal of Pest Science 83, 7783.CrossRefGoogle Scholar
Zerba, K. E. and Collins, J. P. (1992) Spatial heterogeneity and individual variation in diet of an aquatic top predator. Ecology 73, 268279.CrossRefGoogle Scholar
Ziegler, R. and Van Antwerpen, R. (2006) Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology 36, 264272.CrossRefGoogle ScholarPubMed