Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:42:57.287Z Has data issue: false hasContentIssue false

Methyl isonicotinate – a non-pheromone thrips semiochemical – and its potential for pest management

Published online by Cambridge University Press:  16 May 2017

D.A.J. Teulon*
Affiliation:
The New Zealand Institute of Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
M.M. Davidson
Affiliation:
The New Zealand Institute of Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
N.B. Perry
Affiliation:
The New Zealand Institute of Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
M.-C. Nielsen
Affiliation:
The New Zealand Institute of Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
C. Castañé
Affiliation:
Institut de Recercai Tecnologia Agroalimentaries (IRTA), Ctra. de Cabrils, Km 2, 08348 Cabrils (Barcelona), Spain
D. Bosch
Affiliation:
Institut de Recercai Tecnologia Agroalimentaries (IRTA), Ctra. de Cabrils, Km 2, 08348 Cabrils (Barcelona), Spain
J. Riudavets
Affiliation:
Institut de Recercai Tecnologia Agroalimentaries (IRTA), Ctra. de Cabrils, Km 2, 08348 Cabrils (Barcelona), Spain
R.W.H.M. van Tol
Affiliation:
Wageningen UR, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, the Netherlands
W.J. de Kogel
Affiliation:
Wageningen UR, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, the Netherlands
Get access

Abstract

Methyl isonicotinate is one of several patented 4-pyridyl carbonyl compounds being investigated for a variety of uses in thrips pest management. It is probably the most extensively studied thrips non-pheromone semiochemical, with field and glasshouse trapping experiments, and wind tunnel and Y-tube olfactometer studies in several countries demonstrating a behavioural response that results in increased trap capture of at least 12 thrips species, including the cosmopolitan virus vectors such as western flower thrips and onion thrips. Methyl isonicotinate has several of the characteristics that are required for an effective semiochemical tool and is being mainly used as a lure in combination with coloured sticky traps for enhanced monitoring of thrips in greenhouses. Research indicates that this non-pheromone semiochemical has the potential to be used for other thrips management strategies such as mass trapping, lure and kill, lure and infect, and as a behavioural synergist in conjunction with insecticides, in a range of indoor and outdoor crops.

Type
Review Article
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, Z. S., Greenfield, B. P. J., Ficken, K. J., Taylor, J. W. D., Wood, M. and Butt, T. M. (2015) A new attractant for monitoring western flower thrips, Frankliniella occidentalis, in protected crops. SpringerPlus 4, 89. doi: 10.1186/s40064-015-0864-3.Google Scholar
Anonymous (2013) Biological, semiochemical and selective chemical management methods for insecticide resistant western flower thrips on protected strawberry. SF120, HLO1107. Annual Report Year 3. East Malling Research. http://horticulture.ahdb.org.uk/sites/default/files/research_papers/SF%20120_Report_Annual_2013.pdf. Accessed June 2016.Google Scholar
Broughton, S., Cousins, D. A. and Rahman, T. (2015) Evaluation of semiochemicals for their potential application in mass trapping of Frankliniella occidentalis (Pergande) in roses. Crop Protection 67, 130135.Google Scholar
Broughton, S. and Harrison, J. (2012) Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in western Australia. Crop Protection 42, 156163.Google Scholar
Davidson, M. M., Butler, R. C. and Teulon, D. A. (2009) Pyridine compounds increase thrips (Thysanoptera: Thripidae) trap capture in an onion crop. Journal of Economic Entomology 102, 14681471.Google Scholar
Davidson, M. M., Butler, R. C., Winkler, S. and Teulon, D. A. J. (2007) Pyridine compounds increase trap capture of Frankliniella occidentalis (Pergande) in a covered crop. New Zealand Plant Protection 60, 5660.Google Scholar
Davidson, M. M., Nielsen, M.-C., Butler, R. C., Castañé, C., Alomar, O., Riudavets, J. and Teulon, D. A. J. (2015) Can semiochemicals attract both western flower thrips and their anthocorid predators?. Entomologia Experimentalis et Applicata 155, 5463.Google Scholar
Davidson, M. M., Perry, N. B., Larsen, L., Green, V. C., Butler, R. C. and Teulon, D. A. J. (2008) 4-pyridyl carbonyl compounds as thrips lures: effectiveness for western flower thrips in Y-tube bioassays. Journal of Agricultural and Food Chemistry 56, 65546561.Google Scholar
Davidson, M. M., Skill, S. M., Butler, R. C., Nielsen, M.-C., Keenan, S. and Bulman, S. R. (2012) Virus status of western flower thrips (Frankliniella occidentalis) does not affect their response to a thrips lure or host plant volatiles in a Y-tube olfactometer. New Zealand Plant Protection 65, 120125.Google Scholar
Davidson, M. M., Teulon, D. A. J. and Perry, N. B. (2005) Insect behaviour modifying compounds. Patent Application Number: WO 2005/046330 A1. Available at: https://www.google.com/patents/WO2005046330A1?cl=en.Google Scholar
de Kogel, W. J., Koschier, E. H., Broughton, S., Castañé, C., Davidson, M. M., Hamilton, J. G. C., Kirk, W. D. J., Nielsen, M.-C. K., Riudavets, J., Van Tol, R. and Teulon, D. A. J. (2016) Semiochemicals for sustainable thrips management. Die Bodenkultur 66 (3–4), 1725.Google Scholar
Elimem, M., Teixeira da Silva, J. A. and Chermiti, B. (2014) Double-attraction method to control Frankliniella occidentalis (Pergande) in pepper crops in Tunisia. Plant Protection Science 50, 9096.CrossRefGoogle Scholar
El-Sayed, A. M., Mitchell, V. J. and Suckling, D. M. (2014) 6-Pentyl-2H-pyran-2-one: a potent peach-derived kairomone for New Zealand flower thrips, Thrips obscuratus. Journal of Chemical Ecology 40, 5055.Google Scholar
Harbi, A., Elimem, M. and Chermiti, B. (2013) Use of a synthetic kairomone to control Frankliniella occidentalis Pergande (Thysanoptera; Thripidae) in protected pepper crops in Tunisia. The African Journal of Plant Science and Biotechnology 7, 4247.Google Scholar
Imai, T., Maekawa, M. and Murai, T. (2001) Attractiveness of methyl anthranilate and its related compounds to the flower thrips, Thrips hawaiiensis (Morgan), T. coloratus Schmutz, T. flavus Schrank, and Megalurothrips distalis (Karny) (Thysanoptera: Thripidae). Applied Entomology and Zoology 36, 475478.Google Scholar
Kirk, W. D. J. (2017) The aggregation pheromones of thrips (Thysanoptera) and their potential for pest management. International Journal of Tropical Insect Science 37, 4149.Google Scholar
Koppert Biological Systems (2008) Silver medal for Lurem-TR. Available at: http://www.koppert.com/news-biological-systems/silver-medal-for-lurem-tr/. Accessed March 2016.Google Scholar
Koppert Biological Systems (2016) Lurem-TR. Available at: http://www.koppert.com/products/monitoring/products-monitoring/detail/lurem-tr/. Accessed March 2016.Google Scholar
Koschier, E. H. (2008) Essential oil compounds for thrips control – a review. Natural Product Communications 3 (7), 11711182.Google Scholar
Koschier, E., Nielsen, M.-C., Spangl, B., Davidson, M. M. and Teulon, D. A. J. (2017) The effect of background plant odours on the behavioural responses of Frankliniella occidentalis to attractive or repellent compounds in a Y-tube olfactometer. Entomologia Experimentalis et Applicata 163, 160169.Google Scholar
Liang, X.-H., Lei, Z.-R., Wen, J.-Z. and Zhu, M.-L. (2010) The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Science 17, 535541.CrossRefGoogle Scholar
Mfuti, K. (2016) An autodissemination strategy using entomopathogenic fungi and kairomonal attractants for managing thrips on grain legumes. Unpublished PhD thesis, North-West University, South Africa. 167 pp.Google Scholar
Mfuti, K., Subramanian, S., van Tol, R. W. H. M., Wiegers, G. L., de Kogel, W. J., Niassy, S., du Plessis, H., Ekesi, S. and Maniania, N. K. (2016) Spatial separation of semiochemical Lurem-TR and entomopathogenic fungi to enhance their compatibility and infectivity in an autoinoculation system for thrips management. Pest Management Science 72, 131139.Google Scholar
Mfuti, D. K., Niassy, S., Subramanian, S., du Plessis, H., Ekesi, S., Nguya, K. and Maniania, N. K. (2017) Lure and infect strategy for application of entomopathogenic fungus for the control of bean flower thrips in cowpea. Biological Control 107, 7076.Google Scholar
Moerman, E. (2008). Lurem in French strawberries. Koppert News Letter 47, 15.Google Scholar
Muntyan, E. M., Il'ev, P. B., Batko, M. G. and Yazlovetsky, I. G. (2013) Use of attractants for the control of Thrips tabaci Lind. (Thysanoptera: Thripidae) on onion in the greenhouse. Agrokhimiia 4, 6975 (in Russian; Chemical Abstracts Number CAN160:144548).Google Scholar
Muvea, A. M., Waiganjo, M. M., Kutima, H. L., Osiemo, Z., Nyasani, J. O. and Subramanian, S. (2014) Attraction of pest thrips (Thysanoptera:Thripidae) infesting French beans to coloured sticky traps with Lurem-TR and its utility for monitoring thrips populations. International Journal of Tropical Insect Science 34, 197206.Google Scholar
Niassy, S., Maniania, N. K., Subramanian, S., Gitonga, L. M. and Ekesi, S. (2012) Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomologia Experimentalis et Applicata 142, 97103.Google Scholar
Nielsen, M.-C., Worner, S. P., Rostás, M., Chapman, R. B., Butler, R. C., de Kogel, W. J. and Teulon, D. A. J. (2015) Olfactory responses of western flower thrips (Frankliniella occidentalis) populations to a non-pheromone lure. Entomologia Experimentalis et Applicata 156, 254262. doi:10.1111/eea.12327.Google Scholar
Nielsen, M.-C. (2013) Factors affecting the response of thrips to an olfactory cue. Unpublished PhD thesis. Lincoln University, New Zealand. 155 pp.Google Scholar
Nielsen, M.-C., Butler, R. C. and Teulon, D. A. J. (2016) Response of Frankliniella occidentalis and Thrips tabaci to thrips lures in California. New Zealand Plant Protection 69, 322.Google Scholar
Nielsen, M.-C., Worner, S. P., Chapman, R. B., de Kogel, W. J., Perry, N. B., Sansom, C. M., Murai, T., Muvea, A. M., Subramanian, S. and Teulon, D. A. J. (2010) Optimising the use of allelochemicals for thrips pest management, pp. 324. In Proceedings of the 26th Annual Meeting of the International Society of Chemical Ecology vol. 31. 31 July–4 August 2010, Tours, France.Google Scholar
Penman, D. R., Osborne, G. O., Worner, S. P., Chapman, R. B. and McLaren, G. F. (1982). Ethyl nicotinate: a chemical attractant for Thrips obscuratus (Thysanoptera: Thripidae) in stonefruit in New Zealand. Journal of Chemical Ecology 8, 12991303.Google Scholar
Pherobank (2016) Pherobank Catalogue. Available at: http://www.pherobank.com/Documents/Phero_catalogue2016_144dpi.pdf. Accessed March 2016.Google Scholar
Ruisinger, M. (2008) Förderung des biologischen Pflanzenschutzen im Zierpflanzenbaum, pp. 7879. In Jahresbuch Pflanzenschutzdienst der Landwirtschaftskammer Nordrhein- Westfalen. Pflanzenschutzdiens, Bonn, Germany.Google Scholar
Teulon, D. A. J., Butler, R. C., James, D. E. and Davidson, M. M. (2007a) Odour-baited traps influence thrips capture in proximal unbaited traps in the field. Entomologia Experimentalis et Applicata 123, 253262. doi:10.1111/j.1570-7458.2007.00554.x.Google Scholar
Teulon, D. A. J., Castañé, C., Nielsen, M.-C., El-Sayed, A. M., Davidson, M. M., Gardner-Gee, R., Poulton, J., Kean, A. M., Hall, C., Butler, R. C., Sansom, C. E., Suckling, D. M. and Perry, N. B. (2014a) Evaluation of new volatile compounds as lures for western flower thrips and onion thrips in New Zealand and Spain. New Zealand Plant Protection 67, 175183.Google Scholar
Teulon, D. A. J., Davidson, M. M., Butler, R. C. and Nielsen, M.-C. (2014b) Effect of release rate and odour cross-contamination for semiochemical baited traps used in thrips pest management. IOBC/WPRS Bulletin 102, 205210.Google Scholar
Teulon, D. A. J., Davidson, M. M., Hedderley, D. I., James, D. E., Fletcher, C. D., Larsen, L., Green, V. C. and Perry, N. B. (2007b) 4-Pyridyl carbonyl and related compounds as thrips lures: effectiveness for onion thrips and New Zealand flower thrips in field experiments. Journal of Agriculture and Food Chemistry 55, 61986205.Google Scholar
Teulon, D. A. J., Davidson, M. M., Nielsen, M.-C., Perry, N. B., van Tol, R. W. H. M. and de Kogel, W.-J. (2008b) The potential use of lures for thrips biocontrol in greenhouses: practice and theory, pp. 301–308. In Proceedings of the 3rd International Symposium on Biological Control of Arthropods (edited by Mason, P. G., Gillespie, D. R., and Vincent, C.). United States Department of Agriculture Forest Service, Morgantown West Virginia.Google Scholar
Teulon, D. A. J., Davidson, M. M., Perry, N. B., Nielsen, M.-C., van Tol, R. W. H. M. and de Kogel, W. J. (2011) Recent developments with methyl isonicotinate, a semiochemical used in thrips pest management. New Zealand Plant Protection 64, 287.Google Scholar
Teulon, D. A. J., Nielsen, M.-C., De Kogel, W. J., van Tol, R. W. H. M. and Davidson, M. M. (2008a) A new lure for Thrips major . New Zealand Plant Protection 61, 386.Google Scholar
Teulon, D. A. J., Nielsen, M. C., Jones, S. and Leskey, T. C. (2016) A new lure for Frankliniella tritici (Thysanoptera: Thripidae), p. 58. In Proceedings of the First Annual Meeting of the Northeastern Plant, Pest and Soils Conference 2016 (edited by Gover, A. E.). North eastern Weed Science Society/Entomological Society of America (Eastern Branch)/American Phytopat-hological Society (North eastern Division)/ American Society of Agronomy (North eastern Regional Branch)/Crop Science Society of America/ Soil Science Society of America.Google Scholar
Teulon, D. A. J., Nielsen, M.-C., James, D. E., Winkler, S., McLachlan, A. R. G. and Perry, N. B. (2007c) Combination of two odour chemical lures does not increase thrips capture in field bioassays. New Zealand Plant Protection 60, 6166.Google Scholar
Till, C. M., Butler, R. C., Horne, P. A., Hives, N. and Teulon, D. A. J. (2009) Using LUREM-TR to trap thrips in glasshouse crops in Victoria, Australia. New Zealand Plant Protection 62, 398.Google Scholar
van Tol, R. W. H. M., de Bruin, A., Butler, R. C., Davidson, M. M., Teulon, D. A. J. and de Kogel, W. J. (2012) Methyl isonicotinate induces increased walking and take-off behaviour in western flower thrips Frankliniella occidentalis . Entomologia Experimentalis et Applicata 142, 181190.Google Scholar
van Tol, R. W. H. M., de Kogel, W. J. and Teulon, D. (2007a) New compound catches more thrips. Australian Flower Industry: The Magazine for the Australian Cut Flower & Foliage Industry 17, 3233.Google Scholar
van Tol, R. W. H. M., James, D. E., de Kogel, W. J. and Teulon, D. A. J. (2007b) Plant odours with potential for a push–pull strategy to control the onion thrips. Thrips tabaci. Entomologia Experimentalis et Applicata 122, 6976.CrossRefGoogle Scholar
Wogin, M. J., Butler, R. C., Teulon, D. A. J. and Davidson, M. M. (2010) Field response of onion thrips and New Zealand flower thrips to single and binary blends of thrips lures. The Canadian Entomologist 142, 7579.Google Scholar