Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T23:39:38.627Z Has data issue: false hasContentIssue false

Insulin-induced effect on diapausing pupae of tropical tasar silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae)

Published online by Cambridge University Press:  19 September 2011

Ashok Kumar Sinha
Affiliation:
Central Tasar Research and Training Institute, Nagri, Ranchi-835303, India
Dipankar Chakraborty
Affiliation:
Central Tasar Research and Training Institute, Nagri, Ranchi-835303, India
Anathbandhu Chaudhuri
Affiliation:
Central Tasar Research and Training Institute, Nagri, Ranchi-835303, India
Get access

Abstract

Diapausing pupae of tasar silkworm, Antheraea mylitta Drury were injected with ox pancreas insulin (40 I.U. per ml) on day 150 to observe the effect of this vertebrate hormone on diapause physiology. Insulin at the dose of 5 μl (0.2 I.U.) per pupa exhibited its positive impact by enhancing the incidence of male and female moth eclosion, female moth weight, egg production (laid + unlaid), and fecundity and shortening of time taken for emergence in both sexes. But, 10 μl (0.4 I.U.) dose of insulin increased only the female eclosion and reduced the time taken for emergence in each sex when compared to that of control. Administration of higher dose of insulin (10 μ1 per pupa) decreased the egg production and fecundity. No significant changes were observed in hatchability and incubation phenomena of eggs laid by the treated females. Further, both the doses of insulin were able to bring about the morphometric changes of testis and ovary by altering their shape and size during pupal diapause. Thus, it reveals from the preliminary findings that vertebrate insulin induces diapause physiology of A. mylitta.

Résumé

Des pupes en diapause du ver à soie Antheraea mylitta Drury ont reçu au 150e jour une injection d'insuline pancréatique de taureau (40 I.U. par ml) en vue d'enregistrer l'effet de cette hormone sur la physiologie de la diapause. L'insuline à la dose de 5 μl (0,2 I.U.) par pupe a eu un impact positif en augmentant l'incidence de l'éclosion chez les populations mâles et femelles, le poids de la femelle, la production d'oeufs (pondu et non-pondu) et la fécondité ainsi qu'un temps réduit d'émergence chez les deux sexes. Mais une dose de 10 μl (0,4 I.U.) d'insuline a accru seulement l'éclosion de la femelle et réduit la durée jusqu'a l'émergence pour chaque sexe comparativement à celle du témoin. L'administration d'une dose plus élevée d'insuline (10 μl par pupe) a réduit la production d'oeufs et la fecondité. Aucun changement significatif n'a été observé dans l'éclosion et I'incubation d'oeufs pondues par les femelles traitées. En outre, toutes les deux doses d'insuline ont entrainé des changements morphométriques des testicules et des ovaires en modifiant leur forme et leur taille durant la diapause pupale. Par conséquent, ces résultats préliminaires révèlent que l'insuline des vertébrés induit une diapause chez A. mylitta.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beck, S. D. (1971) Insect Photoperiodism 2nd edn., Academic Press, New York.Google Scholar
Bodnaryk, R. P. (1987) Dual control of pupal diapause by cyclic nucleotides in the bertha armyworm, Mamestra configurata Wlk. J. Insect Physiol. 33, 3337.CrossRefGoogle Scholar
Bollenbacher, W. E., Katahira, E. J., O'Brien, M., Gilbert, L. I., Thomas, M. K., Agui, N. and Baumhover, A. H. (1984) Insect prothoracicotropic hormone: Evidence for two molecular forms. Science 224, 1245–1245.CrossRefGoogle ScholarPubMed
Chaudhuri, A. and Medda, A. K. (1987a) Effect of thyroxine on protein, RNA and DNA contents of ovary of silkworms, Bombyx mori L. at larval, pupal and adult stages of development and production of eggs. Zool. Jb. Anat. 115, 90–90.Google Scholar
Chaudhuri, A. and Medda, A. K. (1987b) Thyroxine induced alterations in protein and nucleic acid contents of fat body of female silkworms during different developmental stages. Insect Sci. Applic. 8, 48–48.Google Scholar
Davis, K. T. and Shearn, A. (1977) In vitro growth of imaginal disks from Drosophila melanogaster. Science 196, 438–140.CrossRefGoogle ScholarPubMed
Denlinger, D. L. (1985) Hormonal control of diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 8, pp. 353–112. Pergamon Press, Oxford.Google Scholar
Falkmer, S., Carraway, R. E., El-Salhy, M., Emdin, S. O., Grimelius, L., Rehfeld, J. F., Reinecke, M. and Schwartz, T. F. (1981) Phytogeny of the gastroenteropancreatic neuroendocrine system. A review with special reference to the occurrence of CCK-like and neurotensin-like polypeptides in lower vertebrates and invertebrates. UCLA Forum Med. Sci. 23, 42–42.Google Scholar
Falkmer, S., Emdin, S., Havu, N., Lundgren, G., Marques, M., Ostberg, Y., Steiner, D. F. and Thomas, N. W. (1973) Insulin in invertebrates and cyclostomes. Amer. Zool. 13, 625.CrossRefGoogle Scholar
Gorbman, A. and Bern, H. A. (1974) A Text Book of Comparative Endocrinology. Wiley Eastern Private Limited, New Delhi.Google Scholar
Grieneisen, M. L., Warren, J. T., Sakurai, S. and Gilbert, L. I. (1991) A pupative route to ecdysteroids: Metabolism of cholesterol in vitro by mildly disrupted prothoracic glands of Manduca sexta. Insect Biochem. 21, 51–51.CrossRefGoogle Scholar
Ishizaki, H. and Suzuki, A. (1988) An insect brain peptide as a member of insulin family. Horm. Metabol. Res. 20, 429–429.CrossRefGoogle ScholarPubMed
Jhoti, H., McLeod, A. N., Blundell, T. L., Ishizaki, H., Nagasawa, H. and Suzuki, A. (1987) Prothoracicotropic hormone has an insulin like tertiary structure. Febs Letters 219, 425–425.CrossRefGoogle ScholarPubMed
Kawakami, A., Kataoka, H., Oka, T., Mizoguchi, A., Kimura-Kawakami, M., Adachi, T., Iwami, M., Nagasawa, H., Suzuki, A. and Ishizaki, H. (1990) Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science 247, 13331335.CrossRefGoogle ScholarPubMed
Kramer, K. J. (1980) Insulin-like and glucagon like hormone in insects. In Neurohormonal Techniques in Insects (Edited by Miller, T. A.), pp. 117136. Springer Verlag, Heidelberg.Google Scholar
Kramer, K. J. (1985) Vertebrate hormones in insects. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 7, pp. 511536. Pergamon Press, Oxford.Google Scholar
Kramer, K. J., Childs, C. N., Speirs, R. D. and Jacobs, R. M. (1982) Purification of insulin-like peptides from insect haemolymph and royal jelly. Insect Biochem. 12, 98–98.CrossRefGoogle Scholar
Lawrence, P. O. (1991) Hormonal effects on insects and other endoparasites in vitro. In Vitro Cell Dev. Biol. 21A, 496–496.Google Scholar
LeRoith, D., Adamo, M., Shemer, J., Waldbillig, R., Lesniak, M. A., dePablo, F., Hart, C. and Roth, J. (1988) Insulin-related materials in the nervous system of vertebrates and non-vertebrates: Possible extrapancreatic production. Horm. Metabol. Res. 20, 411420.CrossRefGoogle ScholarPubMed
LeRoith, D., Shiloach, J., Heffron, R., Rubinovitz, C., Tanenbaum, R. and Roth, J. (1985) Insulin- related materials in microbes. Similarities and differences from mammalian insulins. Can. J. Biochem. Cell Biol. 63, 849–849.CrossRefGoogle ScholarPubMed
Magadum, S. B. and Hooli, M. A. (1989) Effect of insulin on the poly-voltine silkworm, the pure Mysore breed of Bombyx mori L. Sericologia 29, 28–28.Google Scholar
Maier, V., Steiner, P., Fuchs, J., Pfeifle, B., Mezger, M. and Pfeiffer, E. F. (1988) Isolation and partial characterization of insulin of the honeybee (Apis mellifica). Horm. Metabol. Res. 20, 425–425.CrossRefGoogle ScholarPubMed
Morohoshi, S. and Ohkuma, T. (1968) The change of voltinism in Bombyx mori L. by injection of either adrenaline or insulin—Preliminary note. J. Sericult. Sci. Japan. 37, 280–280.Google Scholar
Mosna, G. and Barigozzi, C. (1976) Stimulation of growth by insulin in Drosophila embryonic cells in vitro. Experientia 32, 856–856.CrossRefGoogle ScholarPubMed
Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Ishizaki, H., Mizoguchi, A., Fujiwara, Y. and Suzuki, A. (1984) Aminoterminal amino acid sequence of the silkworm prothoracicotropic hormone: Homology with insulin. Science 226, 1345–1345.CrossRefGoogle ScholarPubMed
Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Mizoguchi, A., Fujiwara, Y., Suzuki, A., Takahashi, S. Y. and Ishizaki, H. (1986) Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Nat. Acad. Sci. USA 831, 5843–5843.Google Scholar
Seecof, R. C. and Dewhurst, S. (1974) Insulin is a Drosophila hormone and acts to enhance the differentiation of embryonic Drosophila cells. Cell Diff. 3, 70–70.CrossRefGoogle ScholarPubMed
Sinha, A. K. and Chaudhuri, A. (1992) Factors influencing the phenology of different broods of tropical tasar silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) in relation to its emergence and post emergence behaviour. Environ. Ecol. 10, 958–958.Google Scholar
Steele, J. E. (1985) Control of metabolic processes. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 8 pp. 99145. Pergamon Press, Oxford.Google Scholar
Tager, H. S., Markese, J., Kramer, K. J., Speirs, R. D. and Childs, C. N. (1976) Glucagon-like and insulin like hormones of the insect secretory system. Biochem. J. 156, 520–520.CrossRefGoogle Scholar
Thorpe, A. and Duve, H. (1984) Insulin and glucagon-like peptides in insects and molluscs. Mol. Physiol. 5, 260–260.Google Scholar