Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T01:40:05.505Z Has data issue: false hasContentIssue false

Insect Glutamatergic-Neuromuscular Synapse as a New Target of Organophosphate Compounds

Published online by Cambridge University Press:  19 September 2011

Mamdouh H. Idriss
Affiliation:
Department of Plant Protection, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
Get access

Abstract

The actions of diisopropylfluorophosphate (DFP), an irreversible anticholinestrase (Anti-ChE) agent, were studied on the glutamatergic neuromuscular synapse of insects. The present study reveals that DFP interacts with pre- and post-synaptic regions, also it gives alternative explanations of the symptoms of organophosphate poisoning in insects. Exposure of the metathoracic flexor tibialis muscle of Locusta migratoria to DFP (0.5 mM), at physiological solution, contained normal external calcium concentration (2 mM), increased spontaneous neurotransmitter release which was large enough to trigger action potentials (APs) and endplate potentials (EPPs). A cyclic pattern of APs and EPPs burses and silence periods were recorded. The spontaneous firing of APs and EPPs was calcium-dependent. Reduction of external calcium concentration abolished this phenomenon, suggesting a pre-synaptic site of action of DFP. A transient pre-synaptic depolarization, caused by the agent, could explain the spontaneous transmitter release and repetitive EPPs firing. The spontaneous activity, induced by DFP, was blocked by a sodium channel blocker such as tetrodotoxin. Exposure to α-bungarotoxin, α-Naja-toxin or atropine did not affect the spontaneous release of the transmitter induced by OP agent. Coupled with the pre-synaptic effect, a decrease in the peak amplitude of endplate current (EPC) and shortening of the decay time constant (τEPC) recorded after exposure to the flexor muscle to 1 mM DFP. Both the pre- and post-synaptic effects of DFP were reversible upon washing the preparation. The present findings shift the focus of the occasioners of hyperexcitation of insects treated with OPs from indirect effects of these compounds on the central nervous system (CNS) to direct effects on neuromuscular junctions and indirect effects on CNS.

Résumé

Les actions du diisopropylfluorophosphate (DFP), un agent anti-cholinergique (anti-ChE) irreversible, ont été étudié sur les synapses neuromusculaires glutamatergiques des insectes. La présente étude révèle que le DFP intervient avéc les régions pré-et postsynaptiques, il donne aussi des explications alternatives sur les symptomes d'empoisonnement par organophosphates chez les insectes. L'exposition du muscle metathoracique flexeur du tibia de Locusta migratoria à une concentration de (0.5 mM) de DFP, en utilisant une solution physiologique contenant une concentration externe normale de calcium (2 mM), a augmente l'émission spontanée de neurotransmetteur suffisament importante pour déclencher des actions de potentiels (APs) ainsi que des potentiels de terminaison du nerf (EPPs). Un modèle cyclique de (APs), de (EPPs) et de périodes de silence fut enregistré. Cette émission spontanée des potentiels (APs) et (EPPs) était dépendente du calcium. La réduction de la concentration externe de calcium a aboli ce phénomène, suggérant un site présynaptique d'action de DFP. Une dépolarization présynaptique transitoire, causée par l'agent, pourait expliquer l'émission spontanée du transmetteur ainsi que la décharqe répéttée de (EPPs). L'activité spontanée provoquée par DFP fut bloquée par un bloceur du canal de sodium comme le tetrodotoxin. L'exposition des préparations aux toxines telles que α-bungarotoxin, α-Najatoxin ainsi que l'atropine montre que ces substances n'eurent aucun effet sur l'émission spontanée du transmetteur provoquée par l'agent OP. Associé ā l'effet présynaptique, il fut enregistré une diminution du pic d'amplitude du courent (EPC), ainsi qu'une diminution de la constante du temps de déclin du courent (τEPC) et ceci après l'exposition du muscle flexeur ā une concentration de 1 mM DFP. La présente étude déplace le foyer de l'intérêt concentré, sur les effets indirects des composés OPs sur le système nerveux central (CNS), aux effets directs sur les jonctions neuromusculaires, ainsi qu'aux effets indirects sur le CNS.

Type
Research Articles
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albuquerque, E. X., Deshpande, S. S., Kawabuchi, M., Aracava, Y., Idriss, M., Rickett, D. L. and Boyne, A. F. (1985) Multiple actions of anitchinestrase agents on chemosensitine synapses: Molecular basis for prophylaxis and treatment of organophosphate poisoning. Fundum. Appl. Toxicol. S, S 182–S 208.Google Scholar
Albuquerque, E. X., Idriss, M., Rao, K. S. and Aracava, Y. (1986) Sensitivity of nicotinic and glutamatergic synapses to reversible and irreversible cholinestrase inhibitors. In Neuropharmacology and Pesticide Action, (Edited by Ford, M. G., Lunt 66, Reay, R. C. and Usherwood, P. N. P.), pp. 6184.Google Scholar
Anderson, C. R., Cull-Candy, S. G. and Miledi, R. (1978) Glutamate current noise: Postsynaptic channel kinetics investigated under voltage clamp. J. Physiol. London 282, 219242.CrossRefGoogle ScholarPubMed
Colhoun, E. H. (1963) The physiological significance of ACh in insects and observations upon other pharmacological active substances. Adv. Insect Physiol. 1, 141.CrossRefGoogle Scholar
Deshpande, S. S., Idriss, M., Rao, K. S., Show, K. and Albuquerque, E. K. (1985) Interaction of reversible and irreversible cholinestrase (ChE) inhibitors with the nicotinic and glutamatergic synapses. 5th Ann. Chem. Def. Biosci. Rev. 83.Google Scholar
Idriss, M. and Albuquerque, E. X. (1985a) Anticholinestrase (Anti-ChE) agents interact with pre and postsynaptic regions of the glutamatergic synapse. Biophys. Soc. Abstr. 47, 259a.Google Scholar
Idriss, M. and Albuquerque, E. X. (1985b) Phencyclidine (PCP) blocks glutamate-activated post-synaptic currents. FEBS Lett. 189, 150156.CrossRefGoogle Scholar
Idriss, M., Filbin, M., Eldefrawi, A. T., Eldefrawi, M. E. and Albuquerque, E. X. (1984) Effects of chlorisondamine and philanthotoxin on glutamate receptor channel complex of locust muscle. Fed. Proc. 43, 342.Google Scholar
Idriss, M., Aguayo, L. G., Rickett, D. L. and Albuquerque, E. X. (1986a) Organophosphate and carbamate compounds have pre- and postjunctional effects at the insect glutamatergic synapse. J. Pharmacol. Exp. Ther. 239, 279285.Google Scholar
Idriss, M., Swanson, K. and Albuquerque, E. X. (1986b) Organophosphates and carbamates act at the insect glutamate synapse. The Pharmacologist 28.Google Scholar
Kerkut, G. A., Shapira, A. and Walker, R. J. (1965) The effect of acetylcholine, glutamic acid and GABA on contractions of the perfused cockroach leg. Comp. Biochem. Physiol. 16, 3748.CrossRefGoogle ScholarPubMed
Kuba, K., Albuquerque, E. X. and Barnard, E. A. (1973) Diisopropylfluorophosphate: Suppression of ionic conductance of the cholinergic receptor. Science 181, 853856.Google Scholar
Kuba, K., Albuquerque, E. X., Daly, J. and Barnard, E. A. (1974) A study of the irreversible cholinesterase inhibitor, diisopropylfluorophosphate, on time course of end-plate currents in frog sartorius muscle. J. Pharmacol. Exp. Ther. 189, 499512.Google ScholarPubMed
Mathers, D. A. and Usherwood, P. N. R. (1976) Concanavalin A blocks desensitization of glutamate receptors on insect muscle fibers. Nature (Lond.) 259, 409411.CrossRefGoogle Scholar
McDonald, T. J., Farley, R. D. and March, R. B. (1972) Pharmacological profile of the excitatory neuromuscular synapses of insect retractor unguis muscle. Comp. Gen. Pharmacol. 3, 327338.CrossRefGoogle ScholarPubMed
Robbins, J. (1959) The excitation and inhibition of crustacean muscle by amino acids. J. Physiol. 148, 3950.CrossRefGoogle ScholarPubMed
Takeuchi, A. and Takeuchi, N. (1959) Active phase of frogs end plate potential. J. Neurophysiol. 22, 395411.Google Scholar
Takeuchi, A. and Takeuchi, N. (1964) The effect on crayfish muscle of iontophoretically applied glutamate. J. Physiol. 170, 296317.CrossRefGoogle ScholarPubMed
Usherwood, P. N. R. and Machili, P. (1968) Pharmacological properties of excitatory neuromuscular synapses in the locust. J. Exp. Biol. 49, 341361.CrossRefGoogle Scholar