Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T09:07:24.522Z Has data issue: false hasContentIssue false

Identification of Behaviourally Active Components from Maize Volatiles for the Stemborer Parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae)

Published online by Cambridge University Press:  19 September 2011

Adele J. Ngi-Song
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Peter G. N. Njagi
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Baldwyn Torto
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
William A. Overholt
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

In the present study, Y-tube olfactometric assays confirmed that volatiles from maize seedlings infested with Chilo partellus larvae were more attractive to the borer's larval endoparasitoid Cotesia flavipes, than volatiles from uninfested maize. Coupled gas chromatography-electroantennographic detector (GC-EAD) analysis of the volatiles from larvae-infested maize revealed six electrophysiologically active compounds on the antennae of the female parasitoid. These compounds were identified by GC-MS as (Z)-3-hexenyl acetate, linalool, (E)-4, 8-dimethyl-1, 3, 7-nonatriene, heptanal, (E)-β-ocimene and a C-5 aliphatic compound. (E)-4, 8-Dimethyl-1, 3, 7-nonatriene was present in EAG-detectable amounts in the volatiles of uninfested seedlings. In bioassays, a blend comprised of (Z)-3-hexenyl acetate, linalool, (E)-4, 8-dimethyl-1,3,7-nonatriene, (E)-β-ocimene and heptanal was significantly attractive to the parasitoid. Of the individual compounds, (Z)-3-hexenyl acetate was attractive at the doses tested while (E)-4,8-dimethyl-1,3,7-nonatriene and heptanal showed varying degree of attractiveness to the parasitoid at different doses. Linalool and (E)-β-ocimene were unattractive at the same doses. The significance of these results is discussed.

Résumé

Dans cette étude, des essais olfactométriques en tubes Y ont confirmé que les matières volatiles de jeunes plants de maïs infestés par des larves du foreur de tige, Chilo partellus attiraient plus de larves de Cotesia flavipes un endoparasitoïde de ce foreur, en comparaison des matières volatiles du maïs non infesté. L'analyse par chromatographie à phase gazeuse couplée avec un détecteur électro-antennographique des matières volatiles du maïs infesté de larves a révélé six composés avec des activités éléctro-physiologiques sur les antennes de la femelle du parasitoïde. Ces composés ont été identifiés par méthodes GC-MS comme (Z)-3-hexényle acétate, linalol, (E)-4, 8-diméthyle-1,3,7-nonatriène, heptanal, (E)-β-ocimène et un autre composé, le C-5 aliphatique. (E)-4, 8-diméthyle-1,3,7-nonatriène était présent en quantités détectables par méthode EAG, dans les matières volatiles de jeunes plants non infestés. Au cours des essais biologiques, un cocktail fait de (Z)-3-hexényle acétate, de linalool, de (E)-4,8-diméthyle-1,3,7-nonatriène, de (E)-β-ocimène et d'heptanal, attirait fortement le parasitoïde. Quant aux différents composés pris isolément, (Z)-3-hexényle acétate était attrayant aux doses testées tandis que (E)-4, 8-diméthyle-l, 3, 7-nonatriène et heptanal montraient des degrés variables d'attractivité à différentes doses. Le linalol et (E)-β-ocimène ne montraient pas d'attrait aux mêmes doses. L'article discute de la signification des résultats obtenus.

Type
Research Articles
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agelopoulos, N. A. and Pickett, J. A. (1998) Headspace analysis in chemical ecology: The effects of different sampling methods on the ratios of volatile compounds present in headspace samples. J. Chem. tail. 24, 11611172.Google Scholar
Agelopoulos, N. A., Hooper, A., Maniar, S. P., Pickett, J. A. and Wadhams, L. J. (1999) A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ. J. Chem. Ecol. 25, 14111425.CrossRefGoogle Scholar
Agelopoulos, N. G. and Keller, M. A. (1994a) Plant-natural enemy association in tritrophic system, Cotesia rubecula-Pieris rapae–Brassicaceae (Cruciferae). Ill: Collection and identification of plant and frass volatiles. J. Client. Ecol. 20, 19551967.Google Scholar
Agelopoulos, N. G. and Keller, M. A. (1994b) Plant-natural enemy association in tritrophic system, Cotesia rubccula-Pieris rapae–Brassicaceae (Cruciferae). II. Preference of Cotesia rubecula for landing and searching. J. Chem. Ecol. 20, 17351748.CrossRefGoogle Scholar
Assad, Y. O. H., Torto, B., Hassanali, A., Njagi, P. G. N., Bashir, N. H. H. and Mahamat, H. (1997) Seasonal variation in the essential oil composition of Commiphora quadricincta and its effect on the maturation of immature adults of the desert locust, Schistocerca gregaria. Phytochemistry 44, 833842.CrossRefGoogle Scholar
Dicke, M. and Vet, L. E. M. (1999) Plant-carnivores interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483520. In: Herbivores: Between Plants and Predators. Proceedings of 38th Symposium of the British Ecological Society. 1997 Wageningen, The Netherlands (Edited by Olff, H., Brown, V. K. and Drent, R. H.). Blackwell Science, Oxford, UK.Google Scholar
Ephrussi, B. and Beadle, G. W. (1936) A technique of transplantation for Drosophila. Am. Nat. 70, 218225.CrossRefGoogle Scholar
Geervliet, J. B. F., Vet, L. E. M. and Dicke, M. (1994) Volatiles from damaged plants as major cues in long-range host searching by the specialist parasitoid Cotesia rubecula. Entomol. Exp. Appl. 73, 289297.CrossRefGoogle Scholar
Hopkins, T. L. and Young, H. (1990) Attraction of the grasshopper, Melanoplus sanguinipes to host-plant odours and volatiles components. Entomol. Exp. Appl. 56, 249258.CrossRefGoogle Scholar
Khan, Z. R., Ampong-Nyarko, K., Chiliswa, P., Hassanali, A., Kimani, S., Lwande, W., Overholt, W. A., Pickett, J. A., Smart, L. E., Wadhams, L. J. and Woodcock, C. N. (1997) Intercropping increases parasitismof pests. Nature 388, 631632.CrossRefGoogle Scholar
McCall, P. J., Turlings, T. C. J., Lounghrin, J. H., Proveaux, A. T. and Tumlinson, J. H. (1994) Herbivore-induced volatiles emission from cotton (Gossypiuui hirsutum L.) seedlings. J. Chem. Ecol. 20, 30393050.CrossRefGoogle ScholarPubMed
Mattiacci, L., Dicke, M. and Posthumus, M. A. (1994) Induction of parasitoid attracting synomone in brussels sprouts plants by feeding Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor. J. Chem. Ecol. 20, 22292247.CrossRefGoogle Scholar
Ngi-Song, A. J. (1995) Parasitization of selected African stem borers by Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenopte.ra: Braconidae) with emphasis on host selectionand host suitability. PhD dissertation presented at University of Ghana, Legon. 198 pp.Google Scholar
Ngi-Song, A. J. and Overholt, W. A. (1997) Host location and acceptance of Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae), parasitoids of African gramineous stemborers: Role of frass and other cues. Biological Control 9, 136142.CrossRefGoogle Scholar
Ngi-Song, A. J., Overholt, W. A., Njagi, P. G. N., Dicke, M., Ayertey, J. N. and Lwande, W. (1996) Volatile infochemicals in host and host habitat location by Cotesia flavipes Cameron and C. sesamiae (Cameron) (Hymenoptera: Braconidae), two larval parasitoids of gramineous stemborers. J. Chem. Ecol. 22, 307323.CrossRefGoogle Scholar
NIST Registry of Mass Spectral Data (1995) Mass Lynx Libraries, Wiley Version 6.0 VG. Organic, England.Google Scholar
Ochieng, R. S., Onyango, F. O. and Bungu, M. D. O. (1985) Improvement of techniques for mass culture ofChilo partellus (Swinhoe). Insect Sci. Applic. 6, 425428.Google Scholar
Omwega, C. O., Kimani, S. W., Overholt, W. A., Ogol, C. K. P. O. (1995) Evidence of the establishment ofCotesia flavipes (Hymenoptera: Braconidae) in continental Africa. Bull. Entomol. Res. 85, 525530.CrossRefGoogle Scholar
Overholt, W. A., Ngi-Song, A. J., Omwega, C. O., Kimani-Njogu, S. W., Mbapila, J., Sallam, M. N. and Ofomata, V. (1997) A review of the introduction and establishment of Cotesia flavipes Cameron in East Africa for biological control of cereal stemborers. Insect Sci. Applic. 17, 7988.Google Scholar
Overholt, W. A., Ochieng, J. O., Lammers, P. and Ogedah, K. (1994) Rearing and field release methods forCotesia flavipes Cameron (Hymenoptera: Braconidae), a parasitoid of tropical gramineous stemborers. Insect Sci. Applic. 15, 253259.Google Scholar
Potting, R. P. J., Vet, L. E. M. and Dicke, M. (1995) Host microhabitat location by stem-borer parasitoid Cotesia flavipes: The role of herbivore volatiles and locally and systemically induced plant volatiles. J. Chem. Ecol. 21, 525539.CrossRefGoogle Scholar
Rutledge, C. E. (1996) A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 7, 121131.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1981) Biometry: The Principles and Practice of Statistics in Biological Research. 2nd edition. Freeman and Company, New York. 859 pp.Google Scholar
Steinberg, S., Dicke, M. and Vet, L. E. M. (1993) Relative importance of infochemicals from first and second trophic levels in long-range host location by larval parasitoid Cotesia glomerata. J. Chem. Ecol. 19, 4759.CrossRefGoogle Scholar
Takabayashi, J., Sato, Y., Horikoshi, M., Yamaoka, R., Yano, S., Ohsaki, N. and Dicke, M. (1998) Plant effects on parasitoid foraging: Differences between two tritrophic systems. Biological Control 11, 97103.CrossRefGoogle Scholar
Takabayashi, J., Takahashi, S., Dicke, M. and Posthumus, M. A. (1995) Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21, 273287.CrossRefGoogle Scholar
Torto, B., Obeng-Ofori, D., Njagi, P. G. N., Hassanali, A. and Amiani, H. (1994) Aggregation pheromone system of adult gregarious desert locust Schistocerca gregaria (Forskal). J. Chem. Ecol. 20, 17491762.CrossRefGoogle ScholarPubMed
Tumlinson, J. H., Turlings, T. C. J., and Lewis, W. J. (1992) The semiochemical complexes that mediate insect parasitoid foraging. Agric. Zool. Rev. 5, 221253.Google Scholar
Turlings, T. C. J., Scheepmaker, J. W. A., Vet, L. E. M., Tumlinson, J. H. and Lewis, W.}. (1990) How contact experiences affect preferences for host-related odors in the larval parasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). J. Chem. Ecol. 16, 15771589.CrossRefGoogle Scholar
Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaus, A. T. and Doolittle, R. A. (1991a) Isolationand identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson) to the microhabitat of one of its hosts. J. Chem. Ecol. 17, 22352251.CrossRefGoogle Scholar
Turlings, T. C. J., Tumlinson, J. H., Eller, F. J. and Lewis, W. J. (1991b) Larval-damaged plants: Source of volatile synomone that guide the parasitoid Cotesia marginiventris to the micro-habitat of its hosts. Entomol. Exp. Appl. 58, 7582.CrossRefGoogle Scholar
Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Carloz, G. and Dorn, S. (1998) The inductionof volatile emissions by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biological Control 11, 22–12CrossRefGoogle Scholar
Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Lewis, W. J. and Tumlinson, J. H. (1993) Learning of host-finding cues by hymenopterous parasitoids, pp. 5278. In Insect Learning: Ecological andEvolutionary Perspectives (Edited by Papaj, D. R. and Lewis, A. C.). Chapman and Hall, New York.Google Scholar
Visser, J. H. (1986) Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31, 121144.CrossRefGoogle Scholar
Whitman, D. W. and Eller, F. J. (1990) Parasitic wasps orient to green leaf volatiles. Chemoecology 1, 6975.CrossRefGoogle Scholar