Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:22:56.392Z Has data issue: false hasContentIssue false

The History of Biological Control with Nosema locustae: Lessons for Locust Management

Published online by Cambridge University Press:  19 September 2011

Jeffrey A. Lockwood
Affiliation:
Entomology Section, Department of Renewable Resources, University of Wyoming, Laramie, WY 82071-3354, USA
Charles R. Bomar
Affiliation:
Department of Biology, University of Wisconsin – Stout, Menomonie, WI 54751, USA
Al B. Ewen
Affiliation:
Agriculture Canada (retired), Box 509, 145 Main St. Dalmeny, Sask. SOK 1E0, Canada
Get access

Abstract

The historical account of the rise and fall of Nosema locustae as a biological control agent of grasshoppers has substantial implications for the successful development and implementation of biological control of migratory locusts in Africa. The potential of N. locustae was ultimately not sufficient to overcome a set of impediments, including: efficacy (the rate and extent of mortality were relatively low), target specificity (not all pest species were susceptible), formulation (wheat bran bait excluded feeding by some pests), cost (the price of the formulated product was excessive), storage (the organism lacked long-term stability), complex application (the pathogen and its carrier had to be applied during a narrow set of environmental and logistical parameters) and production (the use of an in vivo production system made high-volume production difficult). Some of the most significant limitations that led to the failure of N. locustae have been overcome by work on other pathogens, including the problems of formulation, storage, efficacy and production. However, at least four relevant lessons can be derived from the N. locustae story and applied to ongoing work with biological control of migratory locusts. First, the erratic population dynamics of acridids necessitates that the production, storage and distribution of an augmentative biological control agent will be driven by a boom-and-bust cycle. Second, the immense spatial scale and low unit value of the resources (rangelands) being protected create a unique set of logistical challenges. Third, the control of acridids involves the management of a native insect pest embedded within complex, native ecosystems, which suggests that our interventions should be undertaken with a great deal of caution, monitoring and, ultimately, humility. Fourth, although pathogens can be used as ‘bio-insecticides’, biological control requires education of end-users regarding a more sophisticated approach to pest management.

Résumé

Le bilan des forces et faiblesses des formulations à base de Nosema locustae comme agent biologique de lutte contre les criquets migratoires comporte des implications substantielles pour le développement efficace et la mise sur pied des méthodes de lutte contre les criquets migratoires en Afrique. En fin de compte, les potentialités de N. locustae n'ont pas été suffisantes pour parier une série d'obstacles dont: l'efficacité (la proportion et le spectre de mortalité sont restés relativement bas), la spécificité pour l'agent cible (toutes les espèces ne sont pas sensibles), la formulation (certaines espèces refusent de se nourrir sur les appâts à base de son de blé), le coût (coût très élevé pour la formulation), le stockage (instabilité à long terme du pouvoir pathogène de l'agent), la complication lors des traitements (l'agent biologique et les adjuvants doivent être appliqués dans des conditions rigoureuses incluant une série de paramètres environnementaux et logistiques), et enfin la production (la formulation du produit, in vitro, enfreint sa production à grande échelle). Certaines des contraintes les plus importantes conduisant aux échecs d'utilisation de N. locustae ont étaient surmontées grâce aux travaux menés chez d'autres pathogènes sur les problèmes de formulation, de stockage, d'efficacité et de production. Quatre leçons importantes peuvent cependant être dégagées de l'historique d'utilisation de N. locustae et appliquées aux travaux en cours sur les criquets migratoires. Primo, la dynamique de populations erratiques d'acridiens exige que la production, le stockage et la distribution d'un agent biologique supplémentaire soient orientés par le principe de cyclicité d'explosion et expension des fléaux. Secundo, les immenses étendues d'espace à traiter et la valeur unitaire insignifiante des ressources à protéger (pâturages) créent une série de défis logistiques à lever. Tertio, la lutte anti-acridienne visant une gestion d'un insecte autochtone faisant partie d'un complexe d'une faune endémique devrait s'effectuer avec une grande précaution et un suivi extrêmement minutieux. Quarto, quand bien même les agents biologiques peuvent être utilisés comme des bio-insecticides, la lutte biologique implique une formation des utilisateurs finaux compte tenu de son approche plus sophistiquée pour le contrôle du ravageur.

Type
Research and Review Articles
Copyright
Copyright © ICIPE 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M. E. (1982) A summary of the incidence of infection with Nosema locustae and other microsporidia in Aulocara elliotti from the 1982 Platte County Wyoming optimum grasshopper pest management trial. Unpublished report of the USD A-ARS Rangeland Insect Laboratory, Bozeman, MT, 19 pp.Google Scholar
Anonymous (1976) Rangeland enemy meets its match. Agrichem. Age Nov.-Dec. p. 25.Google Scholar
Anonymous (1979) Nosema could control hopper. World Crops, November/December, p. 228.Google Scholar
Anonymous (1987a) Questions and Answers. Advertising brochure for NOLOTM bait, a product of Evans Biocontrol, Inc., Durango, CO, 6 pp.Google Scholar
Anonymous (1987b) China's Inner Mongolia. Inner Mongolia People's Publishing House, Hohot, Inner Mongolia, 119 pp.Google Scholar
Anonymous (1988a) Biological Pest Control: Spreading the News. Advertising brochure for NOLO™ bait, a product of Evans Biocontrol, Inc., Broomfield, CO, 6 pp.Google Scholar
Anonymous (1988b) Trouble Shooting Calibration for Bran Bait Aerial Application. Information circular distributed by Evans Biocontrol, Inc., Broomfield, CO, 4 pp.Google Scholar
Bak, P. and Chen, K. (1991) Self-organized criticality. Sci. Amer. 249, 2633.Google Scholar
Baumgart, M. (1995) Effects of neem (Azadirachta indica L.) products on feeding, metamorphosis, mortality, and behavior on the variegated grasshopper, Zonocerus variegatus (L.). J. Orthop. Res. 4, 1928.CrossRefGoogle Scholar
Berry, J. S., Kemp, W. P. and Onsager, J. A. (1991) Integration of simulation models and an expert system for management of rangeland grasshoppers. Artific. Ititeli. Appi. 5, 114.Google Scholar
Berryman, A. A. (1987) Equilibrium or non-equilibrium: Is that the question? Bull. Ecol. Amer. 68, 500502.Google Scholar
Berryman, A. A. and Millstein, J. A. (1989) Are ecological systems chaotic-and if not, why not? Trends Ecol. Evol. 4, 2628.CrossRefGoogle Scholar
Blanford, S., Thomas, M. B. and Langewald, J. (1998) Behavioural fever in a population of the Senegalese grasshopper, Oedaleus senegalensis, and its implications for biological control using pathogens. Ecol. Entomol. 23, 914.CrossRefGoogle Scholar
Bomar, C. R. and Lockwood, J. A. (1991) Developmental and dietary effects on consumption of wheat bran by laboratory reared Melanoplus sanguinipes (F.) (Orthoptera: Acrididae). J. Kansas Ent. Soc. 64, 295299.Google Scholar
Bomar, C. R., Lockwood, J. A., Fowler, J. F., Schell, S. P., Pomerinke, M. A., Ortega, M. D. and Fang, J. (1991) Biological control of western rangeland grasshoppers with exotic predators and parasites: Potential benefits, costs, and alternatives. Wyoming Agric. Exp. Stn. Bull. B.-958, 57 pp.Google Scholar
Bomar, C. R., Lockwood, J. A., Pomerinke, M. A. and French, J. D. (1993) A multi-year evaluation of the effects of Nosema locustae (Microsporidia: Nosematidae) on rangeland grasshopper (Orthoptera: Acrididae) population density, fecundity, and natural biological controls. Environ. Ent. 22, 489497.CrossRefGoogle Scholar
Branting, L. K., Hastings, J. D. and Lpckwood, J. A. (1997) Integrating cases and models for prediction in biological systems. Artific. Intell. Appi. 11, 2948.Google Scholar
Canning, E. U. (1953) A new microsporidian, Nosema locustae n. sp., from the fat body of the African migratory locust, Locusta migratoria migratorioides R. & F. Parasitolog J. 43, 287290.CrossRefGoogle Scholar
Canning, E. U. (1962a) The life cycle of Nosema locustae Canning in Locusta migratoria migratorioides (Reiche and Fairmaire), and its infectivity to other hosts. J. Insect Pathol. 4, 237247.Google Scholar
Canning, E. U. (1962b) The pathogenicity of Nosema locustae Canning, J. Insect Pathol. 4, 248256.Google Scholar
Capinera, J. L. (1987) Population ecology of rangeland grasshoppers, pp. 162182. In Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective (Edited by Capinera, J. L.). Westview, Boulder, CO.Google Scholar
Capinera, J. L. and Hibbard, B. E. (1987) Bait formulations of chemical and microbial insecticides for suppression of crop-feeding grasshoppers. J. Agric. Entomol. 4, 337344.Google Scholar
Carruthers, R. I. and Onsager, J. A. (1993) Perspective on the use of exotic natural enemies for biological control of pest grasshopper (Orthoptera: Acrididae). Environ. Ent. 22, 885903.CrossRefGoogle Scholar
Cigliano, M. M., Kemp, W. P. and Kalaris, T. (1995) Spatiotemporal characteristics of rangeland grasshopper (Orthoptera: Acrididae) regional outbreaks in Montana. J. Orthop. Res. 4, 111126.CrossRefGoogle Scholar
Connell, J. H. and Sousa, W. P. (1983) On the evidence needed to judge ecological stability or persistence. Amer. Natur. III, 789824.CrossRefGoogle Scholar
Cunningham, G. L. (1992) APHIS; grasshopper integrated pest management in the United States- a co-operative project with emphasis on biological control, pp. 2125. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Davis, R. M., Skold, M. D., Berry, J. S. and Kemp, W. P. (1992) The economic threshold for grasshopper control on public rangelands. J. Agric. Res. Econ. 17, 5665.Google Scholar
Dodd, J. L. (1994) Desertification and degradation in sub-Saharan Africa. Bioscience 44, 2834.CrossRefGoogle Scholar
Erlandson, M. A., Ewen, A. B., Mukerji, M. K. and Gillott, C. (1986) Susceptibility of immature stages of Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae) to Nosema cuneatum Henry (Microsporida: Nosematidae) and its effects on host fecundity. Can. Ent. 118, 2935.CrossRefGoogle Scholar
Evans, J. (1992) Mass production, application and formulation: Panel discussion, p. 263. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Ewen, A. B. and Mukerji, M. K. (1979) Susceptibility of five species of Saskatchewan grasshoppers to field applications of Nosema locustae (Microsporida). Can. Ent. III, 973974.CrossRefGoogle Scholar
Ewen, A. B. and Mukerji, M. K. (1980) Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan, J. Insect Pathol. 35, 295303.Google Scholar
Friedel, M. H. (1991) Range condition assessment and the concept of thresholds: A viewpoint. J. Range Manage. 44, 422426.CrossRefGoogle Scholar
Greathead, D. J. (1992) Natural enemies of tropical locusts and grasshoppers: Their impact and potential as biological control agents, pp. 105121. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Hassell, M. P., Comins, H. N. and May, R. M. (1991) Spatial structure and chaos in insect population dynamics. Nature 353, 255258.CrossRefGoogle Scholar
Heising, S. (1987) Memo to University of Wyoming Extension Service regarding availability of NOLOTM bait, dated 14 July, 2 pp.Google Scholar
Henry, J. E. (1967) Nosema acridophagus sp. n. a microsporidian isolated from grasshoppers. J. Invertebr. Pathol. 9, 331341.CrossRefGoogle Scholar
Henry, J. E. (1969a) Extension of the host range of Nosema locustae in Orthoptera. Ann. Ent. Soc. Amer. 62, 452453.CrossRefGoogle Scholar
Henry, J. E. (1969b) Protozoan and viral pathogens of grasshoppers. PhD Thesis, Montana State University. 153 pp.Google Scholar
Henry, J. E. (1970) Results of the 1969 field application of Nosema locustae for grasshopper control. USD A-ARS Project ENT c9–2 (Rev.), Special Report Z230.Google Scholar
Henry, J. E. (1971) Experimental application of Nosema locustae for control of grasshoppers. J. Invertebr. Pathol. 18, 389394.CrossRefGoogle Scholar
Henry, J. E. (1972) Epizootiology of infections by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1, 111120.Google Scholar
Henry, J. E. (1978) Microbial control of grasshoppers with Nosema locustae Canning. Misc. Pub. Ent. Soc. Amer. 11, 8595.Google Scholar
Henry, J. E. (1981) The value of Nosema locustae in control of grasshoppers. USAID Regional Food Crop Protection Project, Biological control of pests, Dakar, Senegal, unpublished report, 12 pp.Google Scholar
Henry, J. E. (1982a) Production and commercialization of microbials-Nosema locustae and other Protozoa, pp. 103106. In Proceedings of the Third International Colloquium on Invertebrate Pathology, 15th annual meeting of the Society for Invertebrate Pathology, September, 1982.Google Scholar
Henry, J. E. (1982b) Use of baits in microbial control of insects, pp. 45–48. In Proceedings of the Third International Colloquium on Invertebrate Pathology, September, 1982.Google Scholar
Henry, J. E. (1985) Effect of grasshopper species, cage density, light intensity, and method of inoculation on mass production of Nosema locustae (Microsporida: Nosematidae). J. Econ. Ent. 78, 12451250.CrossRefGoogle Scholar
Henry, J. E. and McCleave, B. W. (1963) Effect of spore dosage and grasshopper density on the susceptibility of Melanoplus sanguinipes (F.) (Orthoptera: Acrididae) to Nosema locustae Canning (Sporozoa: Microsporidia: Nosematidae). USDA-ARS Project ENT c9–2, Special Report Z-151, 17 pp.Google Scholar
Henry, J. E. and McCleave, B. W. (1964) The studies of the natural occurrence of Nosema locustae Canning (Microsporidia: Nosematidae) in grasshoppers in Camas County, Idaho. USDA-ARS Project ENT c9–2, Special Report Z-173, 12 pp.Google Scholar
Henry, J. E. and Oma, E. A. (1974a) Effects of infections by Nosema locustae Canning, Nosema acridophagus Henry, and Nosema cuneatum Henry (Microsporidia: Nosematidae) in Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Acrida 3, 223231.Google Scholar
Henry, J. E. and Oma, E. A. (1974b) Effect of prolonged storage of spores on field applications of Nosema locustae (Microsporida: Nosematidae) against grasshoppers. J. Insect Pathol. 23, 371377.CrossRefGoogle ScholarPubMed
Henry, J. E. and Oma, E. A. (1981) Pest control by Nosema locustae, a pathogen of grasshoppers and crickets, pp. 573585. In Microbial Control of Pests and Plant Diseases 1970–1980 (Edited by Burgess, H. D.). Academic Press, New York.Google Scholar
Henry, J. E. and Onsager, J. A. (1982) Large-scale test of control of grasshoppers on rangeland with Nosema locustae. J. Econ. Ent. 75, 3135.CrossRefGoogle Scholar
Henry, J. E. and Onsager, J. A. (1989) Efficacy of Nosema locustae in control of Mormon cricket nymphs, pp. 308312. In USD A-APHIS Grasshopper Integrated Pest Management Project 1988 Annual Report, Boise, Idaho.Google Scholar
Henry, J. E. and Onsager, J. A. (1990) Efficacy of Nosema locustae and Vairimorpha sp. against young nymphs of the Mormon cricket, Anabrus simplex, pp. 241248. In USDA-APHIS Grasshopper Integrated Pest Management Project 1989 Annual Report, Boise, Idaho.Google Scholar
Henry, J. E., Oma, E. A. and Onsager, J. A. (1978) Relative effectiveness of ULV spray applications of spores of Nosema locustae against grasshoppers, }. Econ. Ent. 71, 629632.CrossRefGoogle Scholar
Henry, J. E., Oma, E. A., Onsager, J. A. and Oldacre, S. W. (1979) Infection of the corn earworm Heliothis zea, with Nosema acridophagus and Nosema cuneatum from grasshoppers: Relative virulence and production of spores. J. Insect Pathol. 34, 125132.CrossRefGoogle Scholar
Henry, J. E., Tiahrt, K. and Orna, E. A. (1973) The importance of timing, spore concentrations, and levels of spore carrier in applications of Nosema locustae (Microsporidia: Nosematidae) for control of grasshoppers. J. Invertebr. Pathol. 21, 263272.CrossRefGoogle Scholar
Hewitt, G. B. and Onsager, J. A. (1983) Control of grasshoppers on rangeland in the United States- A perspective, J. Range Manage. 36, 202207.CrossRefGoogle Scholar
Hildreth, M. B. and Fuller, B. (1991) Laboratory bioassay to compare virulence of grasshopper pathogens such as Nosema locustae from different sources, pp. 204209. In USDA-APHIS Grasshopper Integrated Pest Management 1990 Annual Report. Boise, Idaho.Google Scholar
Hildreth, M. B. and Fuller, B. (1992) Monitoring the virulence of Nosema locustae spores from different sources and following different storage periods, pp. 167169. In USDA-APHIS Grasshopper Integrated Pest Management 1991 Annual Report. Boise, Idaho.Google Scholar
Hildreth, M. B. and Fuller, B. (1993) Use of laboratory bioassays to measure the virulence of grasshopper pathogens: Final state of Nosema locustae studies and initial stage of Beauveria bassiana studies, pp. 171174. In USDA-APHIS Grasshopper Integrated Pest Management 1992 Annual Report, Boise, Idaho.Google Scholar
Hildreth, M. B. and Walgenbach, D. D. (1991) Pathological effects of increased concentrations of Nosema locustae on two different grasshopper species with different susceptibilities, pp. 196203. In USDA-APHIS Grasshopper Integrated Pest Management 1990 Annual Report. Boise, Idaho.Google Scholar
Hildreth, M. B., Hechel, D. and Brey, C. (1992) Laboratory bioassay to measure the shelf-life of Nosema locustae-formulated bran and the effect of sunlight on the viability of spores on bran, pp. 171176. In USDA-APHIS Grasshopper Integrated Pest Management 1991 Annual Report. Boise, Idaho.Google Scholar
Hirsch, D., Foster, N., Smith, M., Battaglia, T. and Morgans, M. (1989) Two year evaluation of the 1987 Nosema locustae grasshopper control block, North Dakota, pp. 4751. In USDA-APHIS Grasshopper Integrated Pest Management 1988 Annual Report. Boise, Idaho.Google Scholar
Jackson, W. (1980) New Roots for Agriculture. University of Nebraska Press, Lincoln, 150 pp.Google Scholar
Jackson, W., Berry, W. and Colman, B. (1984) Meeting the Expectations of the Land. North Point Press, San Francisco, 250 pp.Google Scholar
Jameson, D. A. (1988) Modelling rangeland ecosystems for monitoring arid adaptive management, pp. 189221. In Vegetation Science Applications for Rangeland Analysis and Management (Edited by Tueller, P. T.). Kluwer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Johnson, D. L. (1987) Evaluation of grasshopper control with Nosema locustae and insecticide on bran carrier. Farming for the Future Final Report 84–0418, Agriculture Canada Research Station, Lethbridge, Alberta, 37 pp.Google Scholar
Johnson, D. L. (1989) The effects of timing and frequency of application of Nosema locustae (Microspora: Microsporida) on the infection rate and activity of grasshoppers (Orthoptera: Acrididae). J. Invertebr. Pathol. 54, 353362.CrossRefGoogle Scholar
Johnson, D. L. (1992) Introduction: Biology, ecology, field experimental and environmental impact, pp. 267278. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.), CAB International, Wallingford, United Kingdom.Google Scholar
Johnson, D. L. (1997) Nosematidae and other Protozoa as agents for control of grasshoppers and locusts: Current status and prospects. Mem. Entomol. Soc. Canada 171, 375389.CrossRefGoogle Scholar
Johnson, D. L. and Dolinski, M. G. (1997) Attempts to increase the prevalence and severity of infection of grasshoppers with the entomopathogen Nosema locustae Canning (Microsporida: Nosematidae) by repeated field applications. Mem. Entomol. Soc. Canada 171, 391400.CrossRefGoogle Scholar
Johnson, D. L. and Henry, J. E. (1987) Low rates of insecticides and Nosema locustae (Microsporida: Nosematidae) on baits applied to roadsides for grasshopper (Orthoptera: Acrididae) control, J. Econ. Ent. 80, 685689.CrossRefGoogle Scholar
Johnson, D. L. and Pavlikova, E. (1986) Reduction in consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporidia: Nosematidae). J. Invertebr. Pathol. 48, 232238.CrossRefGoogle Scholar
Johnson, D. L., Dolinski, M. G. and Jones, J. W. (1983) Application of Nosema locustae for grasshopper control. Pesticide Research Report, Compiled by Agriculture Canada, Expert Committee on Pesticide Use in Agriculture, Ottawa, p. 170.Google Scholar
Kantack, B. (1988) Cooperative Extension Service Field Facts, 3, 1–2. South Dakota State University, Brookings, SD.Google Scholar
Kemp, W. P. (1987) Probability of outbreak for rangeland grasshoppers (Orthoptera: Acrididae) in Montana: Application of Markoviau principles. J. Econ. Ent. 80, 11001105.CrossRefGoogle Scholar
Kemp, W. P. and Dennis, B. (1993) Density dependence in rangeland grasshoppers (Orthoptera: Acrididae). Oecologia 96, 18.CrossRefGoogle ScholarPubMed
Krall, S. and Knausenberger, W. (1992) Efficacy and environmental impact for biological control of Nosema locustae on grasshoppers in Cape Verde: A synthesis report. Deutsche Gesellschaft Technische Zusammenarbeit, Eschborn, Germany.Google Scholar
Krall, S. and Nasseh, O. M. (1992) GTZ: The Integrated Biological Control of Locusts and Grasshoppers- A GTZ research project, pp. 4449. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Krings, M. (1980) Grasshopper control is a natural. Focus on the Montana Agricultural Cooperative Extension Service 2, 24.Google Scholar
Kurtti, T. J., Munderloh, U. G., Krueger, D. and Ahlstrand, G. G. (1992) Cell culture systems for production of host cell dependent grasshopper pathogens, pp. 211214. In USDA-APHIS Grasshopper Integrated Pest Management Project 1991 Annual Report. Boise, Idaho.Google Scholar
Kurtti, T. J., Munderloh, U. G., Ross, S. E., Ahlstrand, G. G. and Street, D. A. (1991) Cell culture systems for production of host cell dependent grasshopper pathogens, pp. 246251. In USDA-APHIS Grasshopper Integrated Pest Management Project 1990 Annual Report. Boise, Idaho.Google Scholar
Lange, C. E. and De Wysiecki, M. L. (1996) The fate of Nosema locustae (Microsporida: Nosematidae) in Argentine grasshoppers (Orthoptera: Acrididae). Biol. Cont. 7, 2429.CrossRefGoogle Scholar
Lauenroth, W. K. (1979) Grassland primary production: North American grasslands in perspective, pp. 324. In Perspectives in Grassland Ecology (Edited by French, N. R.). Springer-Verlag, New York.CrossRefGoogle Scholar
Laycock, W. A. (1991) Stable states and thresholds of range condition on North American rangeland: A viewpoint, J. Range Manage. 44, 427433.CrossRefGoogle Scholar
Levin, S. A. (1992) The problem of pattern and scale in ecology. Ecology 73, 19431967.CrossRefGoogle Scholar
Lobo, Lima M. L., Brito, J. M. and Henry, J. E. (1992) Biological control of grasshoppers in the Cape Verde Islands, pp. 287295. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Lockwood, J. A. (1988a) Cannibalism in rangeland grasshoppers (Orthoptera: Acrididae) attraction to cadavers, J. Kansas Ent. Soc. 61, 379387.Google Scholar
Lockwood, J. A. (1988b) Biology and recommendations for use of Nosema locustae Canning: A biological control agent of grasshoppers. Wyoming Agric. Exp. Stn. Bull. B917.Google Scholar
Lockwood, J. A. (1989) Ontogeny of necrophily in rangeland grasshoppers, J. Kansus Ent. Soc. 62, 534541.Google Scholar
Lockwood, J. A. (1993) The benefits and costs of controlling rangeland grasshoppers with exotic organisms: The search for a null hypothesis and regulatory compromise. Environ. Ent. 22, 904914.CrossRefGoogle Scholar
Lockwood, J. A. (1995) Grasshopper population dynamics: A prairie perspective, pp. 103128. In The Bionomics of Grasshoppers, Katydids and Their Kin (Edited by Gangwere, S. K., Muralirangan, M. C. and Muralirangan, M.). CAB International, Wallingford, United Kingdom.Google Scholar
Lockwood, J. A. and DeBrey, L. D. (1990a) Direct and indirect effects of Nosema locustae (Canning) (Microsporida: Nosematidae) on rangeland grasshoppers (Orthoptera: Acrididae). J. Econ. Ent. 83, 377383.CrossRefGoogle Scholar
Lockwood, J. A. and DeBrey, L. D. (1990b) A solution for the sudden and unexplained extinction of the Rocky Mountain locust, Melanoplus spretus (Walsh). Environ. Ent. 19, 11941205.CrossRefGoogle Scholar
Lockwood, J. A. and Ewen, A. B. (1997) Biological control of rangeland grasshoppers and locusts, pp. 421442. In The Bionomics of Grasshoppers, Katydids and Their Kin (Edited by Gangwere, S. K., Muralirangan, M. C. and Muralirangan, M.. CAB International, Wallingford, United Kingdom.Google Scholar
Lockwood, J. A. and Kemp, W. P. (1987) Probabilities of rangeland grasshopper outbreaks in Wyoming counties. Wyoming Agric. Exp. Stn. Bull. B896.Google Scholar
Lockwood, J. A. and Larsen, J. C. (1988) Nosema locustae: Principles, promises and problems. Proceedings of the 44th Wyoming Weed and Pest Conference, Douglas, Wyoming, pp. 1825.Google Scholar
Lockwood, J. A. and Lockwood, D. R. (1991) Rangeland grasshopper population dynamics: Insights from catastrophe theory. Environ. Ent. 20, 970980.CrossRefGoogle Scholar
Lockwood, J. A. and Lockwood, D. R. (1993) A unified paradigm of rangeland ecosystem dynamics through the application of catastrophe theory. J. Range Manage. 46, 282289.CrossRefGoogle Scholar
Lockwood, D. R. and Lockwood, J. A. (1997) Evidence of self-organized criticality in insect populations. Complexity 2, 4958.3.0.CO;2-U>CrossRefGoogle Scholar
Lockwood, J. A. and Schell, S. P. (1995) Outbreak dynamics of rangeland grasshoppers in Wyoming: Eruptive, gradient, both, or neither? J. Orthop. Res. 4, 3548.CrossRefGoogle Scholar
Lockwood, J. A. and Schell, S. P. (1997) Decreasing economic and environmental costs through reduced area and agent insecticide treatments (RAATs) for the control of rangeland grasshoppers: Empirical results and their implications for pest management. J. Orthop. Res. 6, 1932.CrossRefGoogle Scholar
Lomer, C. J. and Prior, C. (1992) Biological Control of Grasshoppers and Locusts. CAB International, Wallingford, United Kingdom, 394 pp.Google Scholar
Ma, Y., Pan, J. M., Zhang, Z. R. and Ma, A. S. (1991) A study of controlling Acrididae with Nosema locustae. Grasslands of China 1, 6467 (in Chinese with English summary).Google Scholar
Matteson, P. C. (1992) A review of field studies of the environmental impacts of locust/grasshopper control programmes in Africa, pp. 347355. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Maugh, T. H. (1981) The day of the locust is near. Science 213, 748.CrossRefGoogle Scholar
Meneley, J. C. and Sluss, T. P. (1988) Development of NOLO bait (Nosema locustae) for the control of grasshoppers and locusts. Proceedings of the Brighton Crop Protection Conference 2, 597602.Google Scholar
Menge, B. A. and Olson, A. M. (1990) Role of scale and environmental factors in regulation of community structure. Trends Ecol. Evol. 5, 5257.CrossRefGoogle ScholarPubMed
Morrison, G. and Barbosa, P. (1987) Spatial heterogeneity, population "regulation" and local extinction in simulated host-parasitoid interactions. Oecologia 73, 609614.CrossRefGoogle ScholarPubMed
Mosley, J. C., Smith, E. L. and Ogden, P. R. (1990) Seven Popular Myths about Livestock Grazing on Public Lands. University of Idaho Forest and Range Experiment Station, Moscow, ID, 18 pp.Google Scholar
Moulden, J. H. and D'Antuono, M. F. (1984) Evaluation of Nosema locustae for the control of wingless grasshoppers (Phaulacridium spp.) in western Australia. In Proceedings of the Fourth Australian Applied Entomological Research Conference (Edited by Bailey, P. and Swinger, D.).Google Scholar
Mussgnug, G. L. and Henry, J. E. (1979) Comparability of malathion and Nosema locustae Canning in Melanoplus sanguinipes (F.). Acrida 8, 7781.Google Scholar
Nasseh, O. M., Frères, T., Wilps, T., Kirkilionis, E. and Krall, S. (1992) Field cage trials on the effects of enriched neem oil, insect growth regulators and the pathogens Beauveria bassiana and Nosema locustae on desert locusts in the Republic of Niger, pp. 311320. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford, United Kingdom.Google Scholar
Oma, E. A. and Hewitt, G. B. (1984) Effect of Nosema locustae (Microsporida: Nosematidae) on food consumption in the differential grasshopper (Orthoptera: Acrididae). J. Econ. Ent. 77, 500501.CrossRefGoogle Scholar
Onsager, J. A. (1988) Assessing effectiveness of Nosema locustae for grasshopper control. Montana AgResearch, Montana Agric. Exp. Stn. Bull. 5, 1216.Google Scholar
Onsager, J. A., Rees, N. E., Henry, J. E. and Foster, R. N. (1981) Integration of bait formulations of Nosema locustae and carbaryl for control of rangeland grasshoppers. J. Econ. Ent. 74, 183187.CrossRefGoogle Scholar
Onsager, J. A. and Streett, D. A. (1990) Grasshopper pathogen field evaluation: Nosema, pp. 215219. In USDA-APHIS Grasshopper Integrated Pest Management Project 1989 Annual Report, Boise, Idaho.Google Scholar
Onsager, J. A. and Streett, D. A. (1991) Grasshopper pathogen field evaluation: Nosema, pp. 192195. In USDA-APHIS Grasshopper Integrated Pest Management Project 1990 Annual Report, Boise, Idaho.Google Scholar
Onsager, J. A., Streett, D. A. and Woods, S. A. (1990) Grasshopper pathogen field evaluation: Virus, pp. 220228. In USDA-APHIS Grasshopper Integrated Pest Management Project 1989 Annual Report, Boise, Idaho.Google Scholar
Onsager, J. A., Streett, D. A. and Woods, S. A. (1991) Grasshopper pathogen field evaluation: Virus, pp. 210217. In USDA-APHIS Grasshopper Integrated Pest Management Project 1990 Annual Report, Boise, Idaho.Google Scholar
Pfadt, R. E. (1979) 1979 grasshopper sampling data from the Sheridan, Wyoming optimum grasshopper pest management trial. Unpublished report of the Wyoming Agricultural Experiment Station, Laramie, Wyoming, 17 pp.Google Scholar
Pfadt, R. E. (1980) 1980 grasshopper pest management trial, San Carlos Apache Indian Reservation, Arizona. Unpublished report of the Wyoming Agricultural Experiment Station, Laramie, Wyoming, 29 pp.Google Scholar
Pfadt, R. E. (19821987) Wyoming optimum grasshopper pest management trial. Unpublished reports of the Wyoming Agriculture Experiment Station, Laramie, Wyoming, 133 pp.Google Scholar
Reuter, K. C., Foster, R. N., Hildreth, M. B., Colletto, D. and Hirsch, D. C. (1993) The effect on forage availability of an increased rate of Nosema locustae Canning on rangeland grasshoppers, pp. 175178. In USDA-APHIS Grasshopper Integrated Pest Management 1992 Annual Report. Boise, Idaho.Google Scholar
Reuter, K. C., Foster, R. N., Hildreth, M. B., Colletto, D., Cushing, W. J., Pucelik, M. J., Kahler, D., Houston, R. and Scott, A. (1991) Preliminary investigation of the effect of a greatly increased rate of Nosema locustae on rangeland grasshopper populations, pp. 169174. In USDA-APHIS Grasshopper Integrated Pest Management 1990 Annual Report. Boise, Idaho.Google Scholar
Sanchez, N. E. and De Wysiecki, M. L. (1990) Quantitative evaluation of feeding activity of the grasshopper Dichroplous pratensis (Orthopera: Acrididae) in a natural grassland of La Parnpa, Argentina. Environ. Entomol. 19, 13921395.CrossRefGoogle Scholar
Schaffer, W. M. (1985) Order and chaos in ecological systems. Ecology 66, 93106.CrossRefGoogle Scholar
Schaffer, W. M. and Kot, M. (1986) Chaos in ecological systems: The coals that Newcastle forgot. Trends Ecol. Evol. 1, 5863.CrossRefGoogle ScholarPubMed
Sotherton, N. W., Jepson, P. C., and Pullen, A. J. (1988) Criteria for the design, execution and analysis of terrestrial non-target invertebrate field tests, pp. 183190. In Field Methods for the Study of Environmental Effects of Pesticides (Edited by Greaves, M. P., Smith, B. D., and Greig-Smith, P. W.). British Crop Protect. Council Monograph 40, Thornton Heath, United Kingdom.Google Scholar
Spackman, E. W. (1988) Memo to University extension agents. Unpublished communication through the Wyoming Cooperative Extension Service, 2 pp.Google Scholar
Steinhaus, E. H. (1951) Report on the diagnosis of diseased insects 1944–50. Hilgardia 20, 629678.CrossRefGoogle Scholar
Strauss, S. Y. (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol. Evol. 6, 206210.CrossRefGoogle ScholarPubMed
Streett, D. A. (1987) Future prospects for microbial control of grasshoppers, pp. 205218. In Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective (Edited by Capinera, J. L.). Westview, Boulder.Google Scholar
Streett, D. A. and Henry, J. E. (1990) Microbial control of locusts and grasshoppers in the semi-arid tropics. Boletin de Sanidad Vegetal 20, 2127.Google Scholar
Streett, D. A. and McGuire, M. R. (1990) Pathogenic diseases of grasshoppers, pp. 483516. In Biology of Grasshoppers (Edited by Chapman, R. F. and Joern, A.). Wiley, New York.Google Scholar
Streett, D. A. and Onsager, J. A. (1989) Pathogen research, pp. 306307. In USDA-APHIS Grasshopper Integrated Pest Management Project 1988 Annual Report, Boise, Idaho.Google Scholar
Taylor, A. D. (1990) Metapopulations, dispersal, and predator-prey dynamics: An overview. Ecology 71, 429437.CrossRefGoogle Scholar
Thomas, M. B. (1999) Ecological approaches and the development of ‘truly integrated’ pest management. Proc. Nat. Acad Sci. 96, 59445951.CrossRefGoogle ScholarPubMed
Thomas, M. B. and Wood, S. N. (1997) Fungal epizootiology and its application to the practical use of mycoinsecticides. BPBC Symp.Proc. 68, 6372.Google Scholar
Thomas, M. B., Blanford, S., Gbongboui, C. and Lomer, C. J. (1988) Experimental studies to evaluate spray applications of a mycoinsecticide against the rice grasshopper, Hieroglyphus daganensis, in northern Benin. Entomol. Exp. Appi. 87, 93102.CrossRefGoogle Scholar
Thomas, M. B., Wood, S. N., and Solorzano, V. (1999) Application of insect-pathogen models to biological control, pp. 368384. In Theoretical Approaches to Biological Control (Edited by Hawkins, B. A. and Cornell, H. V.). University Press, Cambridge.CrossRefGoogle Scholar
Torell, L. A., Garrett, K. M., Davis, J. H. and Huddleston, E. W. (1987) A spreadsheet program for assessing the economics of rangeland grasshopper control programs. WCC J. Comp. Appi. 2, 4957.Google Scholar
Undeen, A. H. and Epsky, N. D. (1990) In vitro and in vivo germination of Nosema locustae (Microsporidia: Nosematidae) spores. J. Invertebr. Pathol. 56, 371379.CrossRefGoogle Scholar
USDA (1987) Final environmental impact statement on the Rangeland grasshopper cooperative management program. USDA-APHIS FEIS 87–1, Washington, DC, 257 pp.Google Scholar
USDA (1993) Grasshopper Integrated Pest Management Project 1991 Annual Report. Boise, Idaho, 232 pp.Google Scholar
USDA (1994) Grasshopper Integrated Pest Management Project 1993 Annual Report. Boise, Idaho, 260 pp.Google Scholar
Vaughn, J. L., Brooks, W. M., Couch, T. L., Capinera, J. L. and Maddox, J. V. (1991) Review of the utility of Nosema locustae in the suppression of rangeland grasshoppers. Unpublished document, Grasshopper Integrated Pest Management, Boise Idaho. 10 pp.Google Scholar
Walgenbach, D. D., Bohls, R. A. and Fuller, B. W. (1990) Optimal grasshopper baits, pp. 207214. In USDA-APHIS Grasshopper Integrated Pest Management 1989 Annual Report. Boise, Idaho.Google Scholar
Wang, L. Y., Cao, C., Yu, X., Abudu, W. and Yang, C. (1994) Effects of the control of grasshoppers in Zinjiang rangeland by using Nosema locustae bran bait with different formulation. Chin. J. Biol. Cont. 10, 123125.Google Scholar
Wang, L. Y., Streett, D. A. and Henry, J. E. (1991) Nosema montanae n. sp. (Microsporida: Nosematidae), a parasite from the grasshoppers Melanoplus packardu (Orthoptera: Acrididae). J. Insect Pathol. 58, 211218.CrossRefGoogle Scholar
Westoby, M., Walker, B. and Noy-Meir, I. (1989) Opportunistic management of rangelands not at equilibrium. J. Range Manage. 42, 266274.CrossRefGoogle Scholar
Whitlock, V. H. and Johnson, S. (1990) Stimuli for the in vitro germination and inhibition of Nosema locustae (Microsporidia: Nosematidae) spores, J. Invertebr. Pathol. 56, 5762.CrossRefGoogle Scholar
Yodzis, P. (1988) The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69, 508515.CrossRefGoogle Scholar