Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:37:33.121Z Has data issue: false hasContentIssue false

Effects of sublethal concentrations of diflubenzuron and methoprene on Aedes aegypti (Diptera: Culicidae) fitness

Published online by Cambridge University Press:  01 March 2009

Juliana Junqueira da Silva
Affiliation:
Instituto de Ciências Biomédicas, Programa de Pós-Graduação em Imunologia e Parasitologia Aplicadas, Uberlândia, MG, Brazil
Julio Mendes
Affiliation:
Instituto de Ciências Biomédicas, Programa de Pós-Graduação em Imunologia e Parasitologia Aplicadas, Uberlândia, MG, Brazil
Cecília Lomônaco*
Affiliation:
Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia38.400-902, Minas Gerais, Brazil
*
Get access

Abstract

The effects of sublethal concentrations of the insect growth regulators (IGRs) diflubenzuron and methoprene on some fitness components of an Aedes aegypti (L.) population in south-eastern Brazil were investigated. The fourth instar larvae of the mosquito were exposed to 20 ppb methoprene and 3 ppb diflubenzuron, and adult survivors were evaluated for fitness parameters, including body size and biomass, fecundity, fertility, longevity and symmetry. The sublethal concentrations had negative effects on longevity, but biomass, fecundity and fertility were not affected by either IGR. In separate experiments, A. aegypti individuals' surviving concentrations of 2, 3 and 3.5 ppb diflubenzuron and 5, 10 and 20 ppb methoprene were used for morphological analyses (size and symmetry). Diflubenzuron had negative effects on the mosquito's body symmetry. The observed decreases in longevity and symmetry may have negative impacts on the population dynamics of A. aegypti.

Type
Research Paper
Copyright
Copyright © ICIPE 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antipin, M. I. and Imasheva, A. G. (2001) Genetic variability and fluctuating asymmetry of morphological traits in Drosophila melanogaster reared on a pesticide-containing medium. Russian Journal of Genetics 37, 247252.CrossRefGoogle Scholar
Armbruster, P. and Hutchinson, R. A. (2002) Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). Journal of Medical Entomology 34, 699704.Google Scholar
Babbit, G. A., Kiltie, R. and Bolker, B. (2006) Are fluctuating asymmetry studies adequately sampled implications of a new model for size distribution? American Naturalist 167, 230245.Google Scholar
Bedhomme, S., Agnew, P., Sidobre, C. and Michalakis, Y. (2003) Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. Journal of Evolutionary Biology 16, 721730.CrossRefGoogle ScholarPubMed
Bjorksten, T. A., Fowler, K. and Pomiankowski, A. (2000) What does sexual trait FA tell us about stress? Trends in Ecology Evolution 15, 163166.Google Scholar
Braga, I. A., Mello, C. B., Peixoto, A. A. and Valle, D. (2005) Evaluation of methoprene effect on Aedes aegypti (Diptera: Culicidae) development in laboratory conditions. Memórias do Instituto Oswaldo Cruz 100, 435440.CrossRefGoogle ScholarPubMed
Carvalho, M. S. L., Caldas, E. D., Degallier, N., Vilarinhos, P. T. R., Souza, L. C. K. R., Yoshizawa, M. A. C., Knox, M. B. and Oliveira, C. (2004) Susceptibility of Aedes aegypti larvae to the insecticide temephos in the Federal District, Brazil. Revista de Saúde Pública 38, 16.Google Scholar
Clarke, G. M. and Ridsdill-Smith, T. J. (1990) The effect of avermectin B1 on developmental stability in the bush fly, Musca vetustissima, as measured by fluctuating asymmetry. Entomologia Experimentalis et Applicata 54, 265269.Google Scholar
Cunha, M. P., Lima, J. B. P., Brogdon, W. G., Moya, G. E. and Valle, D. (2005) Monitoring of resistance to the pyrethroid cypermethrin in Brasilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Memórias do Instituto Oswaldo Cruz 100, 441444.CrossRefGoogle Scholar
Floate, K. D. and Fox, A. S. (2000) Flies under stress: a test of fluctuating asymmetry as a biomonitor of environmental quality. Ecological Applications 10, 15411550.CrossRefGoogle Scholar
Fournet, F., Sannier, C. and Monteny, N. (1993) Effects of two insect growth regulators OMS 2017 and diflubenzuron on the reproductive potential of Aedes aegypti. Journal of the American Mosquito Control Association 9, 426430.Google Scholar
FUNASA, (Ed.) (2001) Dengue: instruções para pessoal de combate ao vetor – manual de normas técnicas. Ministério da Saúde, Brasília. 84 pp.Google Scholar
Gelbic, I., Olejnícek, J. and Grubhoffer, L. (2002) Effects of insect hormones on hemagglutination activity in two members of the Culex pipiens complex. Experimental Parasitology 100, 7579.CrossRefGoogle ScholarPubMed
Image J 1.35s, USA (2006) National Institutes of Health. Java 1.5.0_06. Available from: <http://rsb.info.nih.gov/ij/> (accessed 29 April 2008).+(accessed+29+April+2008).>Google Scholar
Klingenberg, C. P. and McIntyre, G. S. (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52, 13631375.CrossRefGoogle ScholarPubMed
Leary, R. F. and Allendorf, F. W. (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Tree Physiology 4, 214216.Google ScholarPubMed
Lomônaco, C. and Germanos, E. (2001) Variações fenotípicas em Musca domestica L. (Diptera: Muscidae) em resposta à competição larval por alimento. Neotropical Entomology 30, 223231.CrossRefGoogle Scholar
Macoris, M. L. G., Andrighetti, M. T. M., Takaku, L., Glasser, C. M., Garbeloto, V. C. and Bracco, J. E. (2003) Resistance of Aedes aegypti from state of São Paulo, Brazil to organophosphate insecticides. Memórias do Instituto Oswaldo Cruz 98, 703708.Google Scholar
Manly, B. F. J. (Ed.) (1994) Multivariate Statistical Methods. Chapman & Hall, London. 215 pp.Google Scholar
Mpho, M., Holloway, G. J. and Callaghan, A. (2001) A comparison of the effects of organophosphate insecticide exposure and temperature stress on fluctuating asymmetry and life history traits in Culex quinquefasciatus. Chemosphere 45, 713720.Google Scholar
Mulla, M. S. (1995) The future of insect growth regulators in vector control. Journal of the American Mosquito Control Association 11, 269273.Google ScholarPubMed
O'Donnel, P. P. and Klowden, M. J. (1997) Methoprene affects the rotation of the male terminalia of Aedes aegypti mosquitoes. Journal of the American Mosquito Control Association 13, 14.Google Scholar
Palmer, R. A. and Strobeck, C. (1986) Fluctuating asymmetry: measurement analysis, patterns. Annual Review of Ecology and Systematics 17, 391421.CrossRefGoogle Scholar
Perfectti, F. and Camacho, J. P. (1999) Analysis of genotypic differences in developmental stability in Annona cherimola. Evolution: International Journal of Organic Evolution 53, 13961405.CrossRefGoogle ScholarPubMed
Reyes-Villanueva, F., Juárez-Eguia, M. and Flores-Leal, A. (1990) Effects of sublethal dosages of Abate® upon adult fecundity and longevity of Aedes aegypti. Journal of the American Mosquito Control Association 6, 739741.Google Scholar
Robert, L. L. and Olson, J. K. (1989) Effects of sublethal dosages of insecticides on Culex quinquefasciatus. Journal of the American Mosquito Control Association 5, 239246.Google Scholar
Rodriguez, M. M., Bisset, J., Ruiz, M. and Soca, A. (2002) Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. Journal of Medical Entomology 39, 882888.Google Scholar
Sawbi, R., Klowden, M. J. and Sjogren, R. D. (1992) Sublethal effects of larval methoprene exposure on adult mosquito longevity. Journal of the American Mosquito Control Association 8, 290292.Google Scholar
Silva, J. J. and Mendes, J. (2007) Susceptibility of Aedes aegypti (L.) to the insect growth regulators diflubenzuron and methoprene in Uberlândia, State of Minas Gerais. Revista da Sociedade Brasileira de Medicina Tropical 40, 612616.CrossRefGoogle Scholar
Silva, J. J., Mendes, J. and Lomônaco, C. (2004) Developmental stress by diflubenzuron in Haematobia irritans (L.) (Diptera: Muscidae). Neotropical Entomology 33, 249253.Google Scholar
Systat (2002) Systat® for Windows® version 10.2. [S.l.]: © Systat Software.Google Scholar
Tripleton, C. A. and Johnson, N. F. (Eds) (2005) Borror and DeLong's Introduction to the Study of Insects. Thomson, Belmont, CA. 864 pp.Google Scholar
Ueno, H. (1994) Fluctuating asymmetry in relation to two fitness components, adult longevity and male mating success in a ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Journal of Economic Entomology 19, 8788.Google Scholar
Vasuki, V. (1999) Influence of IGR treatment on oviposition of three species of vector mosquitoes at sublethal concentrations. Southeast Asian Journal of Tropical Medicine and Public Health 30, 200203.Google ScholarPubMed
Wirth, M. C. and Georghiou, G. P. (1999) Selection and characterization of temephos resistance in a population of Aedes aegypti from Tortola, British Virgin Islands. Journal of the American Mosquito Control Association 15, 315320.Google Scholar
Woods, R. E., Hercus, M. J. and Hoffmann, A. A. (1998) Estimating the heritability of fluctuating asymmetry in field Drosophila. Evolution: International Journal of Organic Evolution 52, 816824.CrossRefGoogle ScholarPubMed
Zar, J. H. (Ed.) (1984) Biostatistical Analysis. Prentice Hall, New Jersey. 718 pp.Google Scholar