Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:09:03.929Z Has data issue: false hasContentIssue false

Does adaptation occur in insect rearing systems, or is it a case of selection, acclimatization and domestication?

Published online by Cambridge University Press:  19 September 2011

J. P. R. Ochieng'-Odero
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Rather than a true adaptive process, laboratory colonization is proposed to depend on the plasticity of the tolerance limits in insect species. Insects will establish successfully in captivity if the magnitude of environmental variables are within the insects' ranges of colonization. Optimum physiological and behavioural responses are obtained when the variables are within the smaller preferred range of colonization. Other concomitant processes at colonization are selection, acclimatization and domestication. Definition of the terms “adaptation”, “acclimatization” and “domestication”, commonly misused in describing processes during laboratory colonization are proposed.

Résumé

La colonisation des insects depend de leur limite de tolerances au laboratoire mais pas au fait pas d'un vrai processus d'adaptation. Les insectes peuvent s'etablir en captivite; si les variables environnementales sont dans la limite acceptable. Les reponses physiologiques et du comportement optimale sont obtenues quand les variables sont pres des valeurs minimales de la colonisation—Les autres facteurs affectant la colonisation sont la selection, l'acclimatisation et la domestication. Les definitions desces mots sou vent mal interpretées pendant la colonisation des insectes au laboratoire sont proposees.

Type
Mini Review
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agee, H. R. (1986) Laboratory-reared weevils (Coleoptera: Curculionidae) are visually impaired. J. Econ. Entomol. 79, 900902.CrossRefGoogle Scholar
Al-izzi, A. J. M., Maliky, S. A. and Jabbo, N. F. (1987) Culturing the Carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae), on an artificial diet. J. Econ. Entomol. 80, 277280.CrossRefGoogle Scholar
Bartlett, A. C. (1984a) Establishment and maintenance of insect colonies through genetic control. In Advances and Challenges in Insect Rearing (Edited by King, E. G. and Leppla, N. C.), Agricultural Research Service, USDA ARS Publishers, Washington.Google Scholar
Bartlett, A. C. (1984b) Genetic changes during insect domestication. In Advances and Challenges in Insect Rearing (Edited by King, E. G. and Leppla, N. C.), Agricultural Research Service, USDA ARS Publishers, Washington, pp. 28.Google Scholar
Bartlett, A. C. (1985) Guidelines for genetic diversity in laboratory colony establishment and maintenance. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.) vol. 1. pp. 717, Elsevier Science Publishers, Amsterdam.Google Scholar
Berlocher, S. H. and Friedman, S. (1981) Loss of genetic variation in laboratory colonies of Phormia regina. Entomol. Exp. & Appl. 30, 205208.Google Scholar
Bernado, R. J., Cupp, E. W. and Kiszewski, A. E. (1986) Rearing blackflies (Diptera: Simuliidae) in the laboratory: Colonization and life table statistics for Simulium vittatum. Ann. Entomol. Soc. Am. 79, 610621.Google Scholar
Berry, R. J. (1982) Neo-Darwinism. Institute of Biology's Studies in Biology No. 144. Edward Arnold, London.Google Scholar
Boiler, E. F. (1972) Behavioral aspects of mass-rearing of insects. Entomophaga 17, 925.CrossRefGoogle Scholar
Boiler, E. F. (1979) Behavioral aspects of quality in insectary production. In Genetics in Relation to Insect Management (Edited by Hoy, M. A. and MacKelvey, J. J.), pp. 153160. Rockefeller Foundation, New York.Google Scholar
Boiler, E. F. and Chambers, D. L. (1977) Quality aspects of mass-reared insects. In Biological Control by Augmentation of Natural Enemies (Edited by Ridgway, R. L. and Vinson, S. B.), pp. 219235. Plenum Press, New York.CrossRefGoogle Scholar
Brewer, F. D. (1983) Evaluation of selected parameters as quality control criteria for mass producing a tobacco budworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 76, 339342.Google Scholar
Bush, G. L. (1975) Genetic variation in natural insect populations and its bearing in mass rearing programmes. In Controlling Fruit Flies by the Sterile Insect Technique. International Atomic Energy Agency (IAEA-PL-582/2) Vienna pp. 917.Google Scholar
Bush, G. L. and Neck, R. W. (1976) Ecological genetics of the screwworm fly, Cochliomya hominivorax (Diptera: Calliphoridae), and its bearing on the quality control of mass-reared insects. Environ. Entomol. 5, 821826.Google Scholar
Bush, G. L. (1979) Ecological genetics and quality control. In Genetics in Relation to Insect Management (Edited by Hoy, M. A. and McKelvey, J. J. Jr), pp. 145160. Rockefeller Foundation, New York.Google Scholar
Curtis, C. F. (1985) Genetic control of insect pests: growth industry or lead balloon? Biol. J. Linnean Soc. 26, 359374.CrossRefGoogle Scholar
Dobzhansky, T. (1941) Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
Dobzhansky, T. (1970) Genetics of the Evolutionary Process. Columbia University Press, New York.Google Scholar
Economopoulos, A. P. and Loukas, M. (1986) ADH allele frequency changes in olive fruit flies shift from olives to artificial larval food and vice versa, effect of temperature. Entomol. Exp. Appl. 40, 215221.CrossRefGoogle Scholar
Edwards, K. J. R. (1977) Evolution in Modern Biology. Institute of Biology's Studies in Biology No. 7, Edward Arnold, London.Google Scholar
Gast, R. T. (1968) Mass rearing of insects: Its concept, methods, and problems. In Radiation, Radioisotopes and Rearing Methods in the Control of Insect Pests. IAEA Panel Proceeding Series, IAEA Vienna.Google Scholar
Gould, S. J. and Lewontin, R. C. (1979) The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B, 205, 581598.Google Scholar
Haefner, J. W. (1970) The effect of low dissolved oxygen concentrations on temperature-salinity tolerance of the sand shrimp Crangon septemspinosa. Physiol. Zool. 43, 3037.CrossRefGoogle Scholar
Hobson, J. M. and Singh, P. (1987) Laboratory colonization of Planotortrix excessana on artificial diet. NZJ. Zool. 14, 8183.CrossRefGoogle Scholar
Hoffman, K. H. (1985) Metabolic and enzyme adaptation to temperature. In Environmental Physiology and Biochemistry of Insects (Edited by Hoffman, K. H.), pp. 132. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Joslyn, D. J. (1984) Maintenance of genetic variability in reared insects. In Advances and Challenges in Insect Rearing (Edited by King, E. G. and Leppla, N. G.), pp. 2029. Agricultural Research Service, USDA ARS Publishers, Washington.Google Scholar
Knippling, E. F. (1982) Present status and future trends of the SIT approach to the control of arthropod pests. In Sterile Insect Technique and Radiation in Insect Control, International Atomic Energy Agency, (IAEA-SM-255/l) Vienna, pp. 323.Google Scholar
Knippling, E. F. (1984) What colonization of insects means to research and pest management. In Advances and Challenges in Insect Rearing. (Edited by King, E. G. and Leppla, N. C.) pp. ix–xi. Agricultural Research Service, USDA ARS Publishers, Washington.Google Scholar
Koyama, J., Nakamori, H. and Kuba, H. (1986) Mating behaviour of wild and mass-reared strains of the melon fly, Dacus curcurbitae Coquillet (Diptera: Tephritidae) in a field cage. App. Entomol. Zool. 21, 203209.Google Scholar
Leppla, N. C., Huettel, M. D., Chambers, D. L. and Turner, W. K. (1976) Comparative life history and respiratory activity of “wild” and colonized Carribbean fruit flies (Dipt.: Tephritidae). Entomophaga 21, 353357.CrossRefGoogle Scholar
Leppla, N. C., Guy, R. H., Chambers, D. L. and Workman, R. B. (1980) Laboratory colonization of a noctuid moth. Ann. Entomol. Soc. Am. 73, 568571.Google Scholar
Leppla, N. C., Huettel, M. D., Chambers, D. L., Ashley, T. R., Miyashita, D. H., Wong, T. T. Y. and Harris, E. J. (1983) Strategies for the colonization and maintenance of the Mediterranean fruit fly. Ent. Exp. & Appl. 33, 8996.Google Scholar
Lewontin, R. C. (1965) Selection for colonizing ability. In The Genetics of Colonizing Species (Edited by Baker, H. G. and Stebbins, G. L.), pp. 7794. Academic Press, New York.Google Scholar
Lewontin, R. C. (1974) The Genetic Basis of Evolutionary Change. Columbia University Press, New York.Google Scholar
Lewontin, R. C. (1978) Adaptation. Am. Sci. 239, 156169.Google Scholar
Loukas, M., Economopoulos, A. P., Zouros, E. and Vergin, Y. (1985) Genetic changes in artificially reared colonies of the olive fruit fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 78, 159165.CrossRefGoogle Scholar
Mackauer, M. (1980) Some aspects of quality and quality control of biological control agents during insectary propagation. In Proceedings of V Int. Symposium on Biological Control of Weeds, pp. 207220. Brisbane, Australia.Google Scholar
Mason, L. J., Pashley, D. P. and Johnson, S. J. (1987) The laboratory as an altered habitat: Phenotypic and genetic consequences of colonization. Florida Entomol. 70, 4958.CrossRefGoogle Scholar
Mayr, E. (1963) Animal Species and Evolution. Belknap Press, Cambridg, Mass.Google Scholar
Moore, R. F. (1984) Message from the conference chairman. In Advances and Challenges in Insect Rearing (Edited by King, E. G. and Leppla, N. C.), pp. vii–viii. Agricultural Research Service, USDA ARS Publishers, Washington.Google Scholar
Moore, R. F. (1987) Adaptation of the boll weevil to laboratory rearing on a soybean-Pharmamedia based diet. J. Agric. Entomol. 4, 2932.Google Scholar
Nei, M., Maruyama, T. and Chakraborty, R. (1975) The bottleneck effect and genetic variability in populations. Evolution 29, 110.Google Scholar
Ochieng'-Odero, J. P. R. and Singh, P. (1992) Life cycle changes during 12 successive generations of laboratory colonisation of the leafroller Cnephasia jactatana (Walker) (Lepidoptera, Tortricidae) on artificial diet. NZ J. Zool. 19, 113121.Google Scholar
Pashley, D. P. and Proverbs, M. D. (1981) Quality control by electrophoretic monitoring in a laboratory colony of codling moths. Ann. Entomol. Soc. Am. 74, 2023.Google Scholar
Proshold, F. I. and Bartel, J. A. (1972) Differences in radiosensitivity of two colonies of tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). Can. Entomol. 104, 9951002.Google Scholar
Putman, R. J. (1984) The geography of animal communities. In Themes in Biogeography (Edited by Taylor, J. A.), pp. 163190. Croom Helm, London.Google Scholar
Putman, R. J. and Wratten, S. D. (1984) Principles of Ecology. Croom Helm, London.Google Scholar
Rai, K. S. (1969) Status of the sterile-male technique for mosquito control. In Sterile-male Technique for Eradication or Control of Harmful Insects. IAEA Proceeding Series, Vienna.Google Scholar
Raulston, J. R. (1975) Tobacco budworm: Observations on the laboratory adaptation of a wild strain. Ann. Entomol. Soc. Am. 68, 139142.CrossRefGoogle Scholar
Rossler, Y. (1975) The ability to inseminate: A comparison between laboratory-reared and field populations of the Mediterranean fruit fly, Ceratitis capitata. Entomol. Exp. & Appl. 18, 255260.Google Scholar
Roush, R. T. (1986) Inbreeding depression and laboratory adaptation in Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 79, 583587.CrossRefGoogle Scholar
Ryan, B. F., Joiner, B. L. and Ryan, T. A. jr (1985) Minitab Handbk. Duxbury Press, Boston.Google Scholar
Shelford, V. E. (1913) Animal Communities in Temperate America. University of Chicago Press, Chicago, USA.CrossRefGoogle Scholar
Schoonhoven, L. M. (1967) Loss of hostplant specificity by Manduca sexta after rearing on an artificial diet. Entomol. Exp. & Appl. 10, 270272.CrossRefGoogle Scholar
Simpson, G. W. (1953) The Major Features of Evolution. Columbia University Press, New York.CrossRefGoogle Scholar
Singh, P. (1983) A general purpose laboratory diet mixture for rearing insects. Insect Sci. Applic. 4, 357362.Google Scholar
Singh, P., Clare, G. K. and Ashby, M. D. (1985) Epiphyas postivittana. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.), Vol. II. pp. 271282, Elsevier Science Publishers, Amsterdam.Google Scholar
Smith, P. H. and Morton, R. (1985) Assessment of the field performance of compound chromosome strains compared to laboratory-reared wild-type strains in Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull. Entomol. Res. 75, 233244.CrossRefGoogle Scholar
Steven, D. (1988) Entomology and Kiwifruit. In Kiwi fruit: Science and Management (Edited by Warrington, I. J. and Weston, G. C.), Ray Richard Publisher and NZ. Soc. Hort Sci., Auckland.Google Scholar
Stock, M. W. and Robertson, J. L. (1982) Quality assessment and control in a western spruce budworm laboratory colony. Entomol. Exp. & Appl. 32, 2832.Google Scholar
Tignor, K. R. and Eaton, J. L. (1986) Effects of prolonged colonization, crowding and starvation on development and survival rates of cabbage loopers, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae). Entomol. Sci. 21, 6882.Google Scholar
van Lenteren, J. C. (1986) Parasitoids in the greenhouse: Success with seasonal inoculative release systems. In Insect Parasitoids. pp. 341374. Academic Press, London.Google Scholar