Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T18:50:30.292Z Has data issue: false hasContentIssue false

Antixenotic and antibiotic components of resistance to the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) in various host-plants

Published online by Cambridge University Press:  19 September 2011

M. Tertuliano
Affiliation:
Laboratoire d'Entomologie Agricole, ORSTOM B. P. 181, République populaire du Congo
S. Dossou-Gbete
Affiliation:
Institut Pluridisciplinaire de Recherches Appliquées (IPRA) Avenue de l'Université, 64 000 Pau, France
B. Le Rü
Affiliation:
Laboratoire d'Entomologie Agricole, ORSTOM B. P. 181, République populaire du Congo
Get access

Abstract

Antixenotic and antibiotic components of resistance to the cassava mealybug, Phenacoccus manihoti Matt. Ferr. were evaluated in different varieties of cassava (Manihot esculenta Crantz), in Poinsettia (Euphorbia pulcherrima Wild), Talinum (Talinum triangulare Jack) and Faux-caoutchouc (hybrid of M. esculenta and M. glaziovii Mull. Arg.). Resistance, was estimated in the field on 25 varieties of cassava by means of varietal screening. Although we were unable to identify varieties ofcassava totally resistant to P. manihoti, there was evidence of partial resistances. Thus the Incoza variety is the most resistant, followed by the Moudouma and Zanaga varieties. On the other hand we found very susceptible varieties, such as Dikonda, Kataoli, 3M8 and 1M20. Laboratory evaluations of the antibiotic component of resistance, made by estimating the intrinsic capacity for increase rc, showed that the host-plantshave a considerable effect on the multiplying capacity of the mealybug. Indeed rc ranges from 0.038 (Poinsettia) to 0.160 (Ganfo cassava variety), i.e. a ratio of 1 to 4 between the two extreme values. If the cassava varieties alone are considered, the percentage of maximum variation is 20% between the Incoza (rc = 0.133) and Ganfo (rc = 0.160) varieties. The Incoza cassava variety is the most resistant, in terms of both antixenosis and antibiosis. Classification of the other cassava varieties, from the most to the least resistant, differs according to the resistant component under consideration. Poinsettia and Talinum both have a very strong antixenotic component, but their antibiotic component differs (rc = 0.038 and 0.150 respectively). Our results suggest that the resistance mechanisms of the host-plants of P. manihoti intervening in the fixation of the pest (antixenosis), are different from those acting on the development of the mealybug (antibiosis). We established significant correlations between the size of the mealybugs and their demographic characteristics for all the plants studied: the duration of the prereproductive period is shorter and the net reproduction rate is higher when the mealybugs are large-sized. These results are discussed in the context of an integrated monitoring programme.

Résumé

Les composantes antixénotiques et antibiotiques de la résistance de différentes variétés de manioc (Manihot esculenta Crantz), du Poinsettia (Euphorbia pulcherrima Wild.), du Talinum (Talinum triangulare Jack.) et du Faux-caoutchouc (hybride de M. esculenta et M. glaziovii Mull. Arg.), vis-à-vis de la-cochenille farineuse du manioc Phenacoccus manihoti Matt. Ferr., ont ete évaluees. La résistance au champ a été estimée sur 25 variétés de manioc, au travers d'un criblage variétal. Ce dernier n'a pas permis d'identifier des variétés de manioc totalement résistantes vis-à-vis de P. manihoti; il a cependant permis la mise en évidence de résistances partielles. Ainsi, la variété Incoza est la plus résistante, suivie par les variétés Moudouma et Zanaga. A l'opposé, nous trouvons des variétés très sensibles telles que Dikonda, Kataoli, 3M8 et 1M20. L'evaluation au laboratoire de la composante antibiotique de la résistance, au travers de I'estimation de l' capacité intrinsèque d'accroissement rc, montre que les plantes-hotes exercent une forte influence sur le. pouvoir multiplicateur de la cochenille. En effèt, rc est compris entre 0.038 (Poinsettia) et 0.160 (variété de manioc Ganfo) soit un rapport de 1 à 4 entre les deux valeurs extrêmes. Si nous ne considérons que les seules variétés de manioc le pourcentage de variation maximum est de 20% entre les variétés Incoza (rc = 0.133) et Ganfo (rc = 0.160). La variété de manioc Incoza est la plus résistante aussi bien en terme d'antixénose que d'antibiose. Le classement des autres variétés de manioc de la plus à la moins résistante est différent selon la composante de résistance considérée. Le Poinsettia et le Talinum dont la composante antixenotique est trés forte, s'opposent en terme de composante antibiotique (rc = 0,038 et 0,150 respectivement). Nos résultats suggerent que les mecanismes de résistance des plantes-hôtes de P. manihoti qui interviennent dans la fixation du ravageur (antixénose) sont différents de ceux qui agissent sur le développement de la cochenille (antibiose). Nous avons pu établir des corrélations significatives entre la taille des cochenilles et leurs caractéristiques démographiques pour l'ensemble des plantes étudiées: la durée de la période préreproductive est d'autant plus rapide et le taux net de reproduction d'autant plus élevé que les cochenilles sont de grandes failles. Ces résultats sont discutés dans la cadre d'un programme de lutte intégrée.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acreman, T. M. (1984) The contribution of resistance to cereal aphid control. Proc. 1984 British Crop Protection Conference, Pests and Diseases 1, 3136.Google Scholar
Ajayi, O. and Dewar, A. M. (1983) The effect of barley yellow dwarf virus on field populations of cereal aphids, Sitobion avenae and Metopolophium dirhodum. Ann. Appl. Biol. 103, 111.CrossRefGoogle Scholar
Albuquerque M., de (1976) Cochonilha en Mandioca na Amazonia. Empresa Brasileira de Pesquisa Agropecuaria and Centro de Pesquisa Agropecuaria do Tropic Umido, Belem, Brazil.Google Scholar
Auclair, J. L. (1988) Host plant resistance. In Aphids: Their Biology, Natural Enemies and Control. Vol. 3C, pp. 225265 (Edited by Minks, A. K. and Harrewijn, P.), Elsevier, Amsterdam.Google Scholar
Bellotti, A. and Kawano, K. (1980) Breeding approaches in cassava. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 313335, Wiley, New York.Google Scholar
Bhatt, N. and Singh, R. (1991) Bionomics of an Aphidiid parasitoid I Subba Rao & Sharma. 33. Impact of food plants on the behaviour of and sex allocation by the female parasitoid at varying densities. Biol. Agric. Hort. 247259.Google Scholar
Birch, L. C. (1948) The intrinsic rate of natural increase of an insect population. J. anim. Ecol. 17, 1526.CrossRefGoogle Scholar
Birch, N. and Wratten, S. D. (1984) Patterns of aphid resistance in the genus Vicia. Ann. Appl. Biol. 104, 327338.CrossRefGoogle Scholar
Boussienguet, J. (1984) Bioécologie de la cochenille du manioc Phenacoccus manihoti Matile-Ferrero et de ses ennemis naturels au Gabon. These Fac. Sciences, Paris (Paris VI).Google Scholar
CIAT (Centra Internacional de Agriculture Tropical) (1977) Cassava Production Systems. Annual Report 1976 Cali, Columbia.Google Scholar
Carter, N. and Dixon, A. F. G. (1981) The use of insect population simulation models in breeding for resistance. Bull. SROP IV, 2124.Google Scholar
Dagnélie, P. (1975) Analyse Statistique à Plusieurs Variables. Les Presses agronomiques de Gembloux.Google Scholar
Dent, D. R. (1986) Resistance to the aphid Metopolophiumfestucae cerealium: effect of the host plant and reproduction. Ann. Appl. Biol. 108, 577583.CrossRefGoogle Scholar
Dixon, A. F. G. (1987) Parthenogenetic reproduction and rate of increase in aphids. In Aphids: Their Biology, Natural Enemies and Control. Vol. 2A: 269287 (Edited by Minks, A. K. and Harrewijn, P.), Elsevier, Amsterdam.Google Scholar
Di Pietro, J. P. and Dedryver, C. A. (1986) Relations entre les pucerons des céréales et leurs plantes-hótes. I – Mise au point d'une méthodologie de résistance à Sitobion avenae (F.) chez différents cultivars de blé d'hiver. Agronomie 6, 469479.CrossRefGoogle Scholar
Dreyer, D. L. and Campbell, B. C. (1987) Chemical basis of host-plant resistance to aphids. Plant, Cell and Environment 10, 353361.Google Scholar
Fabres, G. and Le Rü, B. (1988) Etude des relations plantes-insectes pour la mise au point de méthodes de regulation des populations de la cochenille du manioc. VII Symposium of the International Society for Tropical Root Crops, Gosier (Guadeloupe), 1–6 July 1985, I. N. R. A. Edit, Paris, pp. 563577.Google Scholar
Fereres, A., Lister, R. M., Araya, J. E. and Foster, J. E. (1989) Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environ. Entomol. 18, 388393.CrossRefGoogle Scholar
Firempong, S. (1988) Components of resistance to Aphis craccivora in some cowpea cultivars. Entomol. exp. appl. 48, 241246.CrossRefGoogle Scholar
Herren, A. H. R. (1987) A review of objectives and achievements. Insect Sci. Applic. 8, 837840.Google Scholar
Horber, E. (1972) Plant resistance to insects. Agric. Sci. Rev. 10, 118.Google Scholar
Iheagwam, E. U. (1981) Natural enemies and alternative host plant of the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae) in southeastern Nigeria. Rev. Zool. Afr. 95, 433438.Google Scholar
Kieckhefer, R. W. (1983) Host preferences and reproduction of four cereal aphids (Hemiptera: Aphididae) on certain wheat-grasses, Agropyron spp. Environ. Entomol. 12, 442445.CrossRefGoogle Scholar
Kogan, M. and Ortman, E. F. (1978) Antixenosis, a new term proposed to replace Painter's “non-preference” modality of resistance. S. A. E. Bull. 24, 175176.Google Scholar
Kraaijeveld, A. R. and Van Alphen, J. J. M. (1986) Host-stage selection and sex allocation by Epidinocarsis lopezi (Hym.: Encyrtidae), a parasitoid of the cassava mealybug Phenacoccus manihoti (Horn.: Pseudococcidae). Med. Fac. Landbouww. Rijksuniv. Gent. 51, 10671078.Google Scholar
Laughlin, R. (1965) Capacity for increase: a useful population statistic. J. Anim. Ecol. 34, 7791.CrossRefGoogle Scholar
Le Rü, B. and Papierok, B. (1987) Taux intrinseque d'accroissement naturel de la cochenille du manioc, Phenacoccus manihoti Matile-Ferrero (Horn.: Pseudococcidae). Intéret d'une méthode simplifiee d'estimation. Acta Oecologica, Oecologia Applic. 8, 314.Google Scholar
Le Rü, B., Iziquel, Y., Biassangama, A. and Kiyindou, A. (1991) Variation d'abondance et facteurs de regulation de la Cochenille du manioc Phenacoccus manihoti. cinq ans après l'introduction d'Epidinocarsis lopezi (Hym. Encyrtidae) au Congo en 1982. Entomophaga 36, 499511.Google Scholar
Lowe, H. J. B. (1974) Intraspecific variation of Myzus persicae on sugar beet (Beta vulgaris). Ann. Appl. Biol. 78, 1526.CrossRefGoogle ScholarPubMed
Mittler, T. E. (1958) Studies on the nutrition of Tuberolachnus salignus (Gmelin) (Homoptera: Aphididae). III. The nitrogen economy. J. exp. Biol. 35, 626638.CrossRefGoogle Scholar
Neuenschwander, P., Schulthess, F. and Madojemu, E. (1986) Experimental evaluation of the efficiency of Epidinocarsis lopezi, a parasitoid introduced into Africa against the cassava mealybug Phenacoccus manihoti. Entomol. exp. appl. 42, 133138.CrossRefGoogle Scholar
Painter, R. H. (1951) Insect Resistance in Crop Plants. The University Press of Kansas, Lawrence, Kansas.CrossRefGoogle Scholar
Schulthess, F., Baumgàrtner, J. U. and Herren, H. R. (1987) Factors influencing the life table statistics of the cassava mealybug Phenacoccus manihoti. Insect Sci. Applic. 8, 851856.Google Scholar
Silvestre, P. (1973) Aspects agronomiques de la production du manioc a la ferme d'état de Mantsoumba (Rép. Pop. Congo). Rapport de mission, I. R. A. T., Paris.Google Scholar
Sinha, T. B. and Singh, R. (1979) Studies on the bionomics of Trioxys (Binodoxys) indicus (Hym.: Aphidiidae). Effect of population densities on sex ratio. Entomophaga 241, 289294.CrossRefGoogle Scholar
Starks, K. J. and Berry, I. L. (1976) Evaluation of sorghum and small grain resistance to greenbugs by population simulations. Environ. Entomol. 5, 205209.CrossRefGoogle Scholar
Starks, K. J., Muniappan, R. and Eikenbary, R. D. (1972) Interaction between plant resistance and parasitism against the greenbug on barley and sorghum. Ann. Entomol. Soc. Am. 65, 650655.CrossRefGoogle Scholar
Sumner, L. C., Dorschner, K. W., Ryan, J. D., Eikenbary, R. D., Johnson, R. C. and McNew, R. W. (1986) Reproduction of Schizaphis graminum (Homoptera: Aphididae) on resistant and susceptible wheat genotypes during simulated drought stress induced with polyethylene glycol. Environ. Entomol. 15, 756762.CrossRefGoogle Scholar
Taylor, L. R. (1975) Longevity, fecundity and size; control of reproductive potential in a polymorphic migrant, Aphis fabae Scop. J. Anim. Ecol. 44, 135163.CrossRefGoogle Scholar
Van Dijken, M. J., Neuenschwander, P., Van Alphen, J. J. M. and Hammond, W. N. O. (1991) Sex ratios in field populations of Epidinocarsis lopezi, an exotic parasitoid of the cassava mealybug, in Africa. Ecol. Entomol. (In press).CrossRefGoogle Scholar
Van Emden, H. F. and Wearing, C. H. (1965) The role of the host plant in delaying economic damage levels in crop plants. Ann. Appl. Biol. 56, 323324.CrossRefGoogle Scholar
Wellings, P. W. and Dixon, A. F. G. (1987) Sycamore aphid numbers and population density. III. The role of aphid-induced changes in plant quality. J. Anim. Ecol. 56, 161170.CrossRefGoogle Scholar