Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:44:57.010Z Has data issue: false hasContentIssue false

Antifeedant activities of crude seed extracts of tropical African spices against Spodoptera littoralis (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  28 February 2007

N.N. Ntonifor
Affiliation:
Department of Life Sciences, University of Buea, PO Box 63, Buea, Cameroon
I. Mueller-Harvey*
Affiliation:
Department of Agriculture, The University of Reading, PO Box 236, Reading, RG6 6AT, United Kingdom
H.F. Van Emden
Affiliation:
Department of Agriculture, The University of Reading, PO Box 236, Reading, RG6 6AT, United Kingdom
R.H. Brown
Affiliation:
Department of Agriculture, The University of Reading, PO Box 236, Reading, RG6 6AT, United Kingdom
Get access

Abstract

The antifeedant activities of Piper guineense Schum et Thonn (Piperaceae), Aframomum melegueta (Rosk) K. Schum (Zingiberaceae), Aframomum citratum (Pareira) K. Schum (Zingiberaceae) and Afrostyrax kamerunensis Perkins and Gilg (Huaceae) seed extracts were investigated in laboratory dual- and no-choice bioassays using third-instar Spodoptera littoralis (Boisduval) larvae. In the dual-choice test, the hexane and methanol extracts of A. melegueta showed potent dose-dependent antifeedant activity at concentrations of ≥300 ppm and the water extract at ≥500 ppm, as illustrated by significantly lower leaf consumptions. Aframomum citratum methanol and water extracts exhibited antifeedant activity at ≥300 and ≥1000 ppm, respectively, but the hexane and ethanol extracts did not affect feeding at any concentration. Piper guineense ethanol and water extracts showed dose-dependent antifeedant effects at ≥300 and ≥500 ppm, respectively, and the methanol extract was active only at 1000 ppm. None of the extracts of the highly aromatic A. kamerunensis exhibited antifeedant activity at any of the tested concentrations. In the no-choice bioassays, extracts with antifeedant activity in the dual-choice tests also showed dose-dependent feeding inhibition. The hexane and methanol extracts of A. melegueta were effective in the no-choice tests at ≥100 and ≥500 ppm, respectively, and the water extract at ≥300 ppm. Similarly, the A. citratum water and methanol extracts were active at ≥500 ppm and the P. guineense water and ethanol extracts at ≥100 ppm. GC/MS chromatography of A. melegueta hexane and methanol extracts revealed volatile constituents with known anti-insect activity. The hexane and methanol extracts of A. melegueta, the methanol extract of A. citratum and the water and ethanol extracts of P. guineense may have potential for use by subsistence farmers.

Type
Research Article
Copyright
Copyright © ICIPE 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Ashamo, M. O. and Odeyemi, O. O. (2001) Protection of maize against Sitophilus zeamais Motsch using seed extracts from some indigenous plants. Journal of Plant Disease Protection 108, 320327.Google Scholar
Ayafor, J. F., Tchuendem, M. H. K. and Nyasse, B. (1994) Novel bioactive diterpenoids from Aframomum aulacocarpos. Journal of Natural Products 57, 917923.CrossRefGoogle ScholarPubMed
Balick, M. J. and Cox, P. A. (1996) Plants, People and Culture: The Science of Ethnobotany. Scientific American Library, New York106 pp.Google Scholar
Brown, R. H., Mueller-Harvey, I. (1999) Evaluation of the novel Soxflo technique for rapid extraction of crude fat in foods and animal feeds. Journal of AOAC International 82, 13691374.CrossRefGoogle ScholarPubMed
Dorman, H. J. D. and Deans, S. G. (2000) Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88, 308316.CrossRefGoogle ScholarPubMed
Escoubas, P., Lajide, L. and Mizutani, J. (1995) Termite antifeedant activity in Aframomum melegueta. Phytochemistry 40, 10971099.CrossRefGoogle Scholar
Fuskushima, J., Yatagai, M. and Ohira, T. (2002) Abietane-type and labdane-type diterpenoids from the cones of Chamaecyparis obtusa. Journal of Wood Science 48, 326330.CrossRefGoogle Scholar
Ivbijaro, M. F. (1990) The efficacy of seed oils of Azadirachta indica A. Juss and Piper guineense Schum and Thonn on the control of Callosobruchus maculatus F. Insect Science and Its Application 11, 149152.Google Scholar
Ivbijaro, M. F. and Agbaje, M. (1986) Insecticidal activities of Piper guineense Schum and Thonn and Capsicum species on the cowpea bruchid, Callosobruchus maculatus F. Insect Science and Its Application 4, 521524.Google Scholar
Jacobson, M. (1989) Botanical pesticides, past, present and future110. In Insecticides of Plant Origin (Edited by Arnason, J. T., Philogene, B. J. R., Morand, P.) ACS Symposium Series 387 Washington, DC.Google Scholar
Kéita, S. M., Vincent, C., Schmit, J.-P., Arnason, J. T. and Belanger, A. (2001) Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) [Coleoptera: Bruchidae]. Journal of Stored Products Research 37, 339349.CrossRefGoogle Scholar
Larson, R. O. (1989) The commercialisation of neem 155168. In The Neem Tree: Focus on Phytochemical Pesticides. (Edited by Jacobson, M.) Florida CRC Press, Boca Raton.Google Scholar
Lewis, A. C., van Emden, H. F. (1986) Assays for insect feeding 95119. In sect–Plant Interactions (Edited by Miller, J. R., Miller, T. A.) Springer Verlag, New York.Google ScholarPubMed
Leatemia, J. A. and Isman, M. B. (2004) Toxicity and antifeedant activity of crude seed extracts of Annona squamosa (Annonaceae) against lepidopteran pests and natural enemies. International Journal of Tropical Insect Science 24, 150158.CrossRefGoogle Scholar
McLaughlin, J. L., Zeng, L., Oberlies, N. H., Alfonso, D., Johnson, H. A. and Cummings, B. B. (1997) Annonaceae acetogenins as new natural pesticides: Recent progress117130. In Phytochemical Pest Control Agents (Edited by Hedin, P., Hollingworth, R., Mujamoto, J., Mesler, E., Thompson, D.) ACS Symposium Series 658, Washington, DCCrossRefGoogle Scholar
Miyakado, M., Nakayama, I. and Onho, N. (1989) Insecticidal unsaturated isobutylamides: From natural products to agrochemical leads,173187. In Insecticides of Plant Origin (Edited by Arnason, J. T., Philogene, B. J. R., Morand, P.) ACS Symposium Series 387, .Washington, DCCrossRefGoogle Scholar
Ntonifor, N. N. and Monah, I. M. (2001) Use of three spices to protect stored maize against Sitophilus zeamais. Tropical Science 41, 7477.Google Scholar
Ntonifor, N. N., Brown, R. H., Mueller-Harvey, I. (2002) Advantages of Soxflo extractions for phytochemical analysis and bioassay screening: 1. Terpenoids. Journal of Agricultural and Food Chemistry 50, 62956300.CrossRefGoogle ScholarPubMed
Nyasse, B., Lenta-Ndjakou, B. (2000) Aframodial, a labdane diterpene showing selective in vitro antileukemic activity. Pharmazie 55, 703704.Google ScholarPubMed
Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. M., Prasad, A. K., Wengel, J., Olsen, C. E. and Boll, P. M. (1997) Phytochemistry of the genus Piper. Phytochemistry 46, 597673.CrossRefGoogle Scholar
Scott, W. P. and McKibben, G. H. (1978) Toxicity of black pepper extract to weevils. Journal of Economic Entomology 71, 343344.CrossRefGoogle Scholar
Simmonds, M. S. J. (2000) Molecular- and chemo-systematics: Do they have a role in agrochemical discovery?. Crop Protection 19, 591596.CrossRefGoogle Scholar
Simmonds, M. S. J., Evans, H. C. and Blaney, W. M. (1992) Pesticides for the year 2000: Mycochemicals and botanicals127164. In Pest Management and Environment in 2000 (Edited by Aziz, A., Kadir, S. A., Barlow, H. S.) CAB International, Wallingford, Oxon.Google Scholar
Stoll, G. (2000) Natural Crop Protection in the Tropics: Letting Information Come to Life, Margraf Verlag,Hohberg 376.Google Scholar
Tomla, C., Kamnaing, P., Ayimele, G. A., Tanifum, E. A., Tsopmo, A., Tane, P., Ayafor, J. F. and Connolly, J. D. (2002) Three labdane diterpenoids from Aframomum sceptrum (Zingiberaceae). Phytochemistry 60, 197200.CrossRefGoogle ScholarPubMed
Tsopmo, A., Ayimele, G. A., Tane, P., Ayafor, J. F., Connolly, J. D. and Sterner, O. (2002) A norbislabdane and other labdanes from Aframomum sulcatum. Tetrahedron 58, 27252728.CrossRefGoogle Scholar
Udo, I. O. (2005) Evaluation of the potential of some local spices as stored grain protectants against the maize weevil Sitophilus zeamais Motsch (Coleoptera: Curculionidae). Journal of Applied Sciences and Environmental Management 9, 165168.Google Scholar
Xue, R. D., Ali, A. and Barnard, D. R. (2003) Laboratory evaluation of toxicity of 16 insect repellents in aerosol sprays to adult mosquitoes. Journal of the American Mosquito Control Association 19, 271274.Google ScholarPubMed