Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T18:44:39.671Z Has data issue: false hasContentIssue false

Analyses of the internal transcribed rDNA spacers (ITS1 and ITS2) of Indian weevils of Odoiporus longicollis (Olivier) reveal gene flow between locations

Published online by Cambridge University Press:  28 September 2018

Lalitha Sunil Kumar*
Affiliation:
Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
Pallavi Shankar
Affiliation:
Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
Vishvas M. Kulkarni
Affiliation:
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Get access

Abstract

An important step towards developing a successful integrated pest management (IPM) programme for the control of banana pseudostem weevil, Odoiporus longicollis (Olivier), a serious pest of banana in India, is the study of the population structure of the pest. In the present study, the genetic variation among 30 individual weevils of O.longicollis collected from six different locations was assessed by analysing the primary nucleotide sequences of the rDNA ITS1 and ITS2 regions. AMOVA, Mantel test, and the maximum likelihood trees of the haplotypes failed to reveal any phylogeographic structuring, which was confirmed by haplotype analysis and genetic differentiation estimates. The results indicate that the locations are not differentiated, i.e. there is gene flow between the locations. The star-shaped networks revealed a signature of demographic expansion that was confirmed by the different demographic tests. These results provide important information, which is essential for the development of suitable strategies for the control of this banana pest, as well as management of its resistance to insecticides.

Type
Research Paper
Copyright
Copyright © icipe 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J. C. (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge MA, USA. 447 pp.Google Scholar
Aylor, D. E. and Irwin, M. E. (1999) Aerial dispersal of pests and pathogens: Implications for integrated pest management. Agriculture and Forest Meteorology 97, 233234.Google Scholar
Azam, M., Tara, J. S., Ayri, S., Feroz, M. and Ramamurthy, V. V. (2010) Bionomics of Odoiporus longicollis Olivier (Coleoptera: Rhynchophoridae) on banana plant (Musa paradisica). Munis Entomology & Zoology 5, 627635.Google Scholar
Bandelt, H. J., Forster, P. and Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.Google Scholar
Bebee, N. W., Maung, J., van den Hurk, A. F., Ellis, J. T. and Cooper, R. D. (2001) Ribosomal DNA spacer genotypes of the Anopheles bancroftii group (Diptera: Culicidae) from Australia and Papua New Guinea. Insect Molecular Biology 10, 407413.Google Scholar
Brower, A. V. Z. and Boyce, T. M. (1991) Mitochondrial DNA variation in monarch butterflies. Evolution 45, 12811286.Google Scholar
Byrne, D. N. (1999) Dispersal of weaker flying insects: the whitefly example. Agriculture and Forest Meteorology 97, 309316.Google Scholar
Collins, F. H. and Paskewitz, S. M. (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Molecular Biology 5, 19.Google Scholar
Depaquit, J., Ferté, H., Léger, N., Killik-Kendrick, R., Rioux, J.-A., Killick-Kendrick, M., Hanafi, H. A. and Gobert, S. (2000) Molecular systematics of the Phlebotomine sandflies of the subgenus Paraphlebotomus (Diptera, Psychodidae, Phlebotomus) based on ITS2 rDNA sequences. Hypotheses of dispersion and speciation. Insect Molecular Biology 9, 293300.Google Scholar
Edgar, R. C. (2004a) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Edgar, R. C. (2004b) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.Google Scholar
Estoup, A., Solignac, M., Cornuet, J. M., Goudet, J. and Scholl, A. (1996) Genetic differentiation of continental and island locations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology 5, 1931.Google Scholar
Freeland, J. R., May, M., Lodge, R. and Conrad, K. F. (2003) Genetic diversity and widespread haplotypes in a migratory dragonfly, the common green darner Anax junius. Ecological Entomology 28, 413421.Google Scholar
Fritz, G. N., Conn, J., Cockburn, A. and Seawright, J. (1994) Sequence analysis of the ribosomal DNA internal transcribed spacer 2 from locations of Anopheles nuneztovari (Diptera, Culicidae). Molecular Biology and Evolution 11, 406416.Google Scholar
Fu, Y.-X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915925.Google Scholar
Gailce Leo Justin, C., Leelamathi, M. and Nirmaljohson, S. B. (2008) Bionomics and management of the pseudostem weevil Odoiporus longicollis Olivier (Coleoptera: Curculionidae) in banana – A review. Agriculture Reviews 29, 185192.Google Scholar
Gallego, D. and Galián, J. (2001) The internal transcribed spacers (ITS1 and ITS2) of the rDNA differentiates the bark beetle forest pests Tomicus destruens and T. piniperda. Insect Molecular Biology 10, 415420.Google Scholar
Gold, C. S., Pena, J. E. and Karamura, E. B. (2001) Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integrated Pest Management Reviews 6, 79155.Google Scholar
Jukes, T. and Cantor, C. R. (1969) Evolution of protein molecules, pp. 21132. In Mammalian Protein Metabolism (edited by Munro, H. N.). Academic Press, New York.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Librado, P. and Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.Google Scholar
Lorenz-Lemkwe, A. P., Muschner, V. R. C., Bonatto, S. L., Cervi, A. C., Salzano, F. M. and Freitas, L. B. (2005) Phylogeographic inferences concerning evolution of Brazilian Passiflora actinia and P. elegans (Passifloraceae) based on ITS (nrDNA) variation. Annals of Botany 95, 799806.Google Scholar
Malloch, G., Fenton, B. and Goodrich, M. A. (2001) Phylogeny of raspberry beetles and other Byturidae (Coleoptera). Insect Molecular Biology 10, 281291.Google Scholar
Muccio, T. D., Marinucci, M., Frusteri, L., Maroli, M., Pesson, B. and Gramiccia, M. (2000) Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius (Diptera, Psychodidae) by ITS2 rDNA sequences. Insect Biochemistry and Molecular Biology 30, 387393.Google Scholar
Mukabayire, O., Boccolini, D., Lochouarn, L., Fontenille, D. and Besansky, N. J. (1999) Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Molecular Ecology 8, 289297.Google Scholar
Mustaffa, M. M. and Sathiamoorthy, S. (2004) Current status of banana research in India, pp. 6580. In Advancing Banana and Plantain R and D in Asia and the Pacific Vol. 12 (edited by Molina, A. B., Eusebio, J. E., Roa, V. N., Van Den Bergh, I., Maghuyop, M. A. G. and Borromeo, K. H.). International Network for the Improvement of Banana and Plantain - Asia Pacific, Los Baños, Laguna, Philippines.Google Scholar
Navajas, M., Lagnel, J., Gutierrez, J. and Boursot, P. (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranycus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80, 742752.Google Scholar
Ostmark, H. E. (1974) Economic insect pests of bananas. Annual Review of Entomology 19, 161176.Google Scholar
Padmanaban, B. and Sathiamoorthy, S. (2001) The banana stem weevil Odoiporus longicollis. Musa Pest Fact Sheet No. 5. Available at: https://www.bioversityinternational.org/fileadmin/_migrated/uploads/tx_news/The_Banana_stem_weevil_Odoiporus_longicollis_756.pdf. International Network for the Improvement of Banana and Plantain.Google Scholar
Padmanaban, B., Sundararaju, P. and Sathiamoorthy, S. (2001a) Incidence of banana pseudostem borer O. longicollis Oliv (Coleoptera: Curculionidae) in banana peduncle. Indian Journal of Entomology 63, 204206.Google Scholar
Padmanaban, B., Sundararaju, P., Velayudhan, K. C. and Sathiamoorthy, S. (2001b) Evaluation of Musa germplasm against banana weevil borers. InfoMusa 10, 2628.Google Scholar
Peakall, R. and Smouse, P. E. (2006) GenAlEx 6, genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.Google Scholar
Presa, P., Pardo, B. G., Martínez, P. and Bernatchez, L. (2002) Phylogeographic congruence between mtDNA and rDNA ITS markers in brown trout. Molecular Biology and Evolution 19, 21612175.Google Scholar
Ramos-Onsins, S. E. and Rozas, J. (2002) Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 20922100.Google Scholar
Roehrdanz, R., Heilmann, L., Senechal, P., Sears, S. and Evenson, P. (2010) Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array. Insect Molecular Biology 19, 463471.Google Scholar
Shankar, P., Kulkarni, V. M. and Sunil Kumar, L. (2015) Male biased gene flow in banana pseudostem weevil (Odoiporus longicollis Olivier) as revealed by analysis of the COI-tRNALeuCOII region. Genetica 143, 8592.Google Scholar
Shukla, A. (2010) Insect pests of banana with special reference to weevil borers. International Journal of Plant Protection 3, 387393.Google Scholar
Shukla, G. S. and Kumar, K. (1970) A note on the biology of Odoiporus longicollis Oliv. Science and Culture 36, 515516.Google Scholar
Sikora, R. A., Bafokuzaka, N. D., Mbwana, A. S. S., Oloo, G. W., Uronu, B. and Seshu Reddy, K. V. (1989) Interrelationships between banana weevil, root lesion nematode and agronomic practices and their importance for banana decline in United Republic of Tanzania. FAO Plant Protection Bulletin 37, 151157.Google Scholar
Simmonds, N. W. (1966) Bananas 2nd edn. Longmans Green & Co. Ltd., London.Google Scholar
Sripriya, C., Padmanaban, B. and Uma, S. (2000) Evaluation of banana (Musa sp.) germplasm against insect pests. Indian Journal of Entomology 62, 382390.Google Scholar
Szalanski, A. L. and Owens, C. B. (2003) Genetic variation of the southern corn rootworm, (Coleoptera, Chrysomelidae). Florida Entomologist 86, 329333.Google Scholar
Szalanski, A. L., Roehrdanz, R. L., Taylor, D. B. and Chandler, L. (1999) Genetic variation in geographical locations of western and Mexican corn rootworm. Insect Molecular Biology 8, 519525.Google Scholar
Tajima, F. (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tang, J., Toe, L., Back, C. and Unnasch, T. R. (1996) Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Molecular Biology and Evolution 13, 244252.Google Scholar
Thapa, R. B. (1993) Survey and identification of major insect pest problems in banana in the Chitwan valley, Nepal, pp. 6669. In IAAS Research Report (1985–1991) (edited by Neupane, F. P.). IAAS, Tribhuvan University, Nepal.Google Scholar
Valmayor, R. V., Davide, R. G., Stanton, J. M., Treverrow, N. L. and Rao, V. N. (eds) (1994) Banana nematodes and weevil borers in Asia and Pacific, p. 258. In Proceedings of a Conference-workshop on Nematodes and Weevil Borers Affecting Bananas in Asia and the Pacific, 18–22 April 1994, Serdang, Selangor, Malaysia. INIBAP/ASPNET, Los Banos, Philippines.Google Scholar
Visalakshi, A., Nair, G. M., Beevi, S. N. and Amma, A. M. K. (1989) Occurrence of Odoiporus longicollis Olivier (Coleoptera: Curculionidae) as a pest of banana in Kerala. Entomon 14, 367368.Google Scholar
Weider, L. J., Elser, J. J., Crease, T. J., Mateos, M., Cotner, J. B. and Markow, T. A. (2005) The functional significance of ribosomal (r)DNA variation: impacts on the evolutionary ecology of organisms. Annual Review of Ecology, Systematics and Evolution 36, 219242.Google Scholar
Xia, X. (2013) DAMBE 5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30, 17201728.Google Scholar
Xia, X., Xie, Z., Salemi, M., Chen, L. and Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26, 17.Google Scholar
Yahia, H., Ready, P. D., Hamdani, A., Testa, J. M. and Guessous-Idrissi, N. (2004) Regional genetic differentiation of Phlebotomus sergenti in three Moroccan foci of cutaneous leishmaniasis caused by Leishmania tropica. Parasite 11, 189199.Google Scholar
Young, I. and Coleman, A. W. (2003) The advantages of the ITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects: a Drosophila example. Molecular Phylogenetics and Evolution 30, 236242.Google Scholar
Supplementary material: File

Kumar et al. supplementary material

Kumar et al. supplementary material 1

Download Kumar et al. supplementary material(File)
File 356.9 KB