Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:47:20.899Z Has data issue: false hasContentIssue false

Spatial and temporal incidence of insect pests in farmers’ cabbage fields in Senegal

Published online by Cambridge University Press:  04 September 2017

Babacar Labou
Affiliation:
UCAD, Equipe Production et Protection Intégrées en Agroécosystèmes Horticoles - 2PIA, 6 Faculté des Sciences et Techniques, Dakar, Senegal
Thierry Brévault*
Affiliation:
BIOPASS, ISRA-UCAD-IRD-CIRAD, Dakar, Senegal CIRAD, UPR AIDA, F-34398, Montpellier, France
Serigne Sylla
Affiliation:
UCAD, Equipe Production et Protection Intégrées en Agroécosystèmes Horticoles - 2PIA, 6 Faculté des Sciences et Techniques, Dakar, Senegal BIOPASS, ISRA-UCAD-IRD-CIRAD, Dakar, Senegal
Mamadou Diatte
Affiliation:
UCAD, Equipe Production et Protection Intégrées en Agroécosystèmes Horticoles - 2PIA, 6 Faculté des Sciences et Techniques, Dakar, Senegal
Dominique Bordat
Affiliation:
UCAD, Equipe Production et Protection Intégrées en Agroécosystèmes Horticoles - 2PIA, 6 Faculté des Sciences et Techniques, Dakar, Senegal
Karamoko Diarra
Affiliation:
UCAD, Equipe Production et Protection Intégrées en Agroécosystèmes Horticoles - 2PIA, 6 Faculté des Sciences et Techniques, Dakar, Senegal
Get access

Abstract

In Senegal, damage caused by insect pests is a major obstacle to seasonal stability and an increase in cabbage production. Little is known about the spatial and temporal distribution of cabbage pests, which makes the design of management recommendations to small-scale farmers challenging. The objectives of this study were to: (i) evaluate the status of insect pests observed in cabbage farmers’ fields; (ii) give information on the spatial and temporal distribution of key pests and (iii) assess the effect of temperature, insecticide applications, and host crop abundance on their incidence. A total of 116 cabbage fields were monitored for insect pests and related damage over four crop cycles, from October 2012 to May 2014, in the main vegetable producing area of Senegal (Niayes). The diamondback moth Plutella xylostella (L.) was by far the most important pest present in all the fields and with high levels of incidence (37.1% infested plants), particularly in the latter part of the dry season in the South of Niayes (50% infested plants). The cabbage webworm Hellula undalis (F.) was mainly observed in the early dry season in the south of Niayes, with an incidence of up to 12.5% infested plants. More surprising was the detection of the tomato fruit worm Helicoverpa armigera (Hübner), with damage of up to 9.4% of cabbage heads. The incidence of sucking pests such as whiteflies Bemisia tabaci (Gennadius), or aphids (including Lipaphis pseudobrassicae (Davis, 1914), Myzus persicae (Sulzer) or Brevicoryne brassicae (L.)) was generally low. The incidence of P. xylostella increased significantly with the number of insecticide applications, indicating that control deployed by growers was ineffective. The incidence of H. undalis did not depend on the number of insecticide applications, but significantly increased with host crop abundance and decreased with temperature. This study is a first step towards developing alternative pest management strategies in the framework of sustainable vegetable production systems.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agboyi, L. K., Ketoh, G. K., Martin, T., Glitho, I. A. and Tamò, M. (2016) Pesticide resistance in Plutella xylostella (Lepidoptera: Plutellidae) populations from Togo and Benin. International Journal of Tropical Insect Science 36, 204210.Google Scholar
Amoabeng, B. W., Gurr, G. M., Gitau, C. W., Nicol, H. I., Munyakazi, L. and Stevenson, P. C. (2013) Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS ONE 8 (10), e78651. doi: 10.1371/journal.pone.0078651.CrossRefGoogle ScholarPubMed
APRD [Arthropod Pesticide Resistance Database] (2015) Arthropod Pesticide Resistance Database. Michigan State University. Available online at: http://www.pesticideresistance.com/display.php?page=species&arId=571 (accessed 23.08.15).Google Scholar
Ayalew, G. (2006) Comparison of yield loss on cabbage from diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using two insecticides. Crop Protection 25, 915919.Google Scholar
Ayalew, G. (2011) Effect of the insect growth regulator novaluron on diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), and its indigenous parasitoids. Crop Protection 30, 10871090.CrossRefGoogle Scholar
Ayalew, G., Sciarretta, A., Baumgartner, J., Ogol, C. and Löhr, B. (2008) Spatial distribution of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), at the field and the regional level in Ethiopia. International Journal of Pest Management 54, 3138.CrossRefGoogle Scholar
Badenes-Perez, F. R. and Shelton, A. M. (2006) Pest management and other agricultural practices among farmers growing cruciferous vegetables in the Central and Western highlands of Kenya and the Western Himalayas of India. International Journal of Pest Management 52, 303315.Google Scholar
Badenes-Perez, F. R., Gershenzon, J. and Heckel, D. G. (2014) Insect attraction versus plant defense: Young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS ONE 9 (4), e95766. https://doi.org/10.1371/journal.pone.0095766.CrossRefGoogle ScholarPubMed
Bianchi, F. J. J. A., Goedhart, P. W. and Baveco, J. M. (2008) Enhanced pest control in cabbage crops near forest in The Netherlands. Landscape Ecology 23, 595602.Google Scholar
Bommarco, R., Miranda, F., Bylund, H. and Björkman, C. (2011) Insecticides suppress natural enemies and increase pest damage in cabbage. Journal of Economic Entomology 104, 782791.Google Scholar
Bopape, M. J., Nofemela, R. S., Mosiane, M. S. and Modise, D. M. (2014) Effects of a selective and a broad-spectrum insecticide on parasitism rates of Plutella xylostella (L.) (Lepidoptera: Plutellidae) and species richness of its primary parasitoids. African Entomology 22, 115126.Google Scholar
Bourdhouxe, L. (1983) Dynamique des populations de quelques populations de quelques ravageurs importants des cultures maraîchères du Sénégal. L'Agronomie Tropicale 2, 132148.Google Scholar
Brévault, T., Renou, A., Vayssières, J.-F., Amadji, G., Assogba-Komlan, F., Dalanda Diallo, M., De Bon, H., Diarra, K., Hamadoun, A., Huat, J., Marnotte, P., Menozzi, P., Prudent, P., Rey, J.-Y., Sall, D., Silvie, P., Simon, S., Sinzogan, A., Soti, V., Tamo, M. and Clouvel, P. (2014) DIVECOSYS: Bringing together researchers to design ecologically-based pest management for small-scale farming systems in West Africa. Crop Protection 66, 5360.Google Scholar
Campos, W. G., Schoereder, J. H. and DeSouza, O. F. (2006) Seasonality in neotropical populations of Plutella xylostella (Lepidoptera): Resource availability and migration. Population Ecology 48, 151158.Google Scholar
Campos, W. G., Schoereder, J. H. and Picanço, M. C. (2003) Performance of an oligophagous insect in relation to the age of the host plant. Neotropical Entomology 32, 671676.Google Scholar
Charleston, D. S., Kfir, R., Dicke, M. and Vet, L. E. M. (2006) Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: A field test of laboratory findings. Biological Control 39, 105114.Google Scholar
Collingwood, E. F., Bourdouxhe, L. and Defrancq, M. (1981) Les Principaux Ennemis des Cultures Maraîchères du Sénégal. Centre pour le Développement de l'Horticulture, Dakar, 95 pp.Google Scholar
De Bon, H., Huat, J., Parrot, L., Sinzogan, A., Martin, T., Malézieux, E. and Vayssières, J.-F. (2014) Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa: A review. Agronomy for Sustainable Development 34, 723736.Google Scholar
Delvare, G. and Aberlenc, H.-P. (1989) Les Insects d'Afrique et d'Amérique Tropicale: Clés Pour la Reconnaissance des Familles. CIRAD, Montpellier, France, 302 pp.Google Scholar
Desneux, N., Decourtye, A. and Delpuech, J.-M. (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106.Google Scholar
FAO (2015) FAOSTAT database. Available online at: http://faostat3.fao.org/home/E (accessed 23.06.15).Google Scholar
Furlong, M. J., Ju, K. H., Su, P. W. Chol, J. K., Il, R. C. and Zalucki, M. P. (2008) Integration of endemic natural enemies and Bacillus thuringiensis to manage insect pests of Brassica crops in North Korea. Agriculture, Ecosystems & Environment 125, 223238.Google Scholar
Furlong, M. J., Shi, Z. H., Liu, Y. Q. Guo, S. J., Lu, Y. B., Liu, S. S. and Zalucki, M. P. (2004) Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. Journal of Economic Entomology 97, 18141827.Google Scholar
Furlong, M. J., Wright, D. J. and Dosdall, L. M. (2013) Diamondback moth ecology and management: Problems, progress, and prospects. Annual Review of Entomology 58, 517541.CrossRefGoogle ScholarPubMed
Godonou, I., James, B., Atcha-Ahowé, C., Vodouhè, S., Kooyman, C., Ahanchédé, A. and Korie, S. (2009) Potential of Beauveria bassiana and Metarhizium anisopliae isolates from Benin to control Plutella xylostella L. (Lepidoptera: Plutellidae). Crop Protection 28, 220224.Google Scholar
Goudegnon, A. E., Kirk, A. A., Schiffers, B. and Bordat, D. (2000) Comparative effects of deltamethrin and neem kernel solution treatments on diamondback moth and Cotesia plutellae (Hym., Braconidae) parasitoid populations in the Cotonou peri-urban area in Benin. Journal of Applied Entomology 124, 141144.Google Scholar
Grzywacz, D., Rossbach, A., Rauf, A., Russell, D. A., Srinivasan, R. and Shelton, A. M. (2010) Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protection 29, 6879.Google Scholar
James, B., Atcha-Ahowé, C., Godonou, I., Baimey, H., Goergen, G., Sikirou, R. and Toko, M. (2010) Integrated Pest Management in Vegetable Production: A Guide for Extension Workers in West Africa. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. 120 pp. Available online at: http://teca.fao.org/sites/default/files/technology_files/Integrated%20Pest%20management%20in%20Vegetable%20production.pdf.Google Scholar
Javaid, I., Saifudine, N., Tombolane, L. and Rafael, E. (2000) Efficacy of aqueous neem extracts in the control of diamondback moth, Plutella xylostella (L.) on cabbage. International Journal of Tropical Insect Science 20, 167170.Google Scholar
Labou, B., Brévault, T., Bordat, D. and Diarra, K. (2016) Determinants of parasitoid assemblages of the diamondback moth, Plutella xylostella, in cabbage farmer fields in Senegal. Crop Protection 89, 611.Google Scholar
Liang, G. M., Chen, W. and Liu, T. X. (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Protection 22, 333340.Google Scholar
Mazlan, N. and Mumford, J. (2005) Insecticide use in cabbage pest management in the Cameron Highlands, Malaysia. Crop Protection 24, 3139.Google Scholar
Mewis, I., Ulrichs, C. H. and Schnitzler, W. H. (2001) Feeding behavior and host-plant of the cabbage webworm Hellula undalis (Fabricius) (Lepidoptera: Pyralidae) in the context of secondary host-plant compounds. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 13, 535538.Google Scholar
R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/.Google Scholar
Sall-Sy, D., Diarra, K. and Toguebaye, B.S. (2004) Seasonal dynamics of the development of the diamondback moth, Plutella xylostella and its hymenopteran parasitoids on cabbages in the Dakar region (Senegal, West Africa), pp. 163166. In Improving Biocontrol of Plutella xylostella (edited by Kirk, A. A. and Bordat, D.). CIRAD, Montpellier, France.Google Scholar
Shirai, Y. and Yano, E. (1994) Hibernation and flight ability of the cabbage webworm, Hellula undalis in Japan. Japan Agricultural Research Quarterly 28, 161167.Google Scholar
Sow, G. and Diarra, K. (2013) Laboratory evaluation of toxicity of Bacillus thuringiensis, neem oil and methamidophos against Plutella xylostella L. (Lepidoptera: Plutellidae) larvae. International Journal of Biological and Chemical Sciences 7, 15241533.Google Scholar
Sow, G., Diarra, K., Arvanitakis, L. and Bordat, D. (2013) The relationship between the diamondback moth, climatic factors, cabbage crops and natural enemies in a tropical area. Folia Horticulturae 25, 312. doi: 10.2478/fhort-2013-0001.Google Scholar
Srinivasan, R., Lin, M. Y. and Hsu, Y. C. (2011) Effects of sub-lethal doses of Bacillus thuringiensis Bt-endotoxins against natural enemies of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), pp. 188–196. In Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests (edited by Srinivasan, R., Shelton, A. M. and Collins, H. L.). Publiction No. 11–755. AVRDC—The World Vegetable Centre, Taiwan.Google Scholar
Talekar, N. S. and Shelton, A. M. (1993) Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 38, 275301.Google Scholar
Tibugari, H., Jowah, P., Mandumbu, R. and Karavina, C. (2012) Tackling diamondback moth Plutella xylostella (L.) resistance: A review on the current research on vegetable integrated pest management in Zimbabwe. Archives of Phytopathology and Plant Protection 45, 24452453.Google Scholar
Weinberger, K. and Srinivasan, R. (2009) Farmers’ management of cabbage and cauliflower pests in India and their approaches to crop protection. Journal of Asia-Pacific Entomology 12, 253259.Google Scholar
Williamson, S., Ball, A. and Pretty, J. (2008) Trends in pesticide use and drivers for safer pest management in four African countries. Crop Protection 27, 13271334.Google Scholar
Zalucki, M. P., Shabbir, A., Silva, R., Adamson, D., Shu-Sheng, L. and Furlong, M. J. (2012) Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? Journal of Economic Entomology 105, 11151129.Google Scholar