Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:44:44.109Z Has data issue: false hasContentIssue false

Laboratory life history parameters of the red-tailed fleshfly, Sarcophaga haemorrhoidalis (Fallen) (Diptera: Sarcophagidae)

Published online by Cambridge University Press:  19 September 2011

L. Chuka Madubunyi
Affiliation:
Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
Get access

Abstract

At room temperature (diurnal range 23–28°C), Sarcophaga haemorrhoidalis (Fallen) developed from egg to adult in approx. 32 days. Survival ( ± SE%) was generally high (76.63 ± 5.67 for the egg, 80.69 ± 3.20 for the larval and 89.83 ± 3.80 for the pupal stages). Adults emerged over a 4-day period between 07.00 and 13.00 hr local time, with daily peak emergence occurring between 07.00 and 10.00 hr. Their immediate post-emergence period was characterized by a highly active and mobile phase lasting 10–15 min followed by an immobile phase lasting about 1.5 hr. Copulation commenced 4.35 ± 0.43 days after adults emerged and was not preceded by elaborate courtship. After a pre-oviposition period of 12.96 ± 0.47 days, females deposited eggs in batches (1.57 ± 0.23 egg-batches/female) each containing a mean of about 37 ± 4 eggs. Fecundity was 52 ± 6 eggs/female during a mean adult life span of 18.68 ± 1.76 days. Although the foregoing life history parameters are strongly suggestive of K-selected ecological strategy, S. haemorrhoidalis may in fact be adopting an opportunistic r−selected ecological strategy since it habitually breeds in unstable environments.

Résumé

Sarcophaga haemorrhoidalis (Fallen) s'est développé de l'oeuf à l'adulte en approximativement 32 jours, à une température d'intérieur. Le taux de survie ( ± SE%) s'est révélé généralement élevé (76.63 ± 5.67 pour l'oeuf; 80.69 ± 3.20 pour le stade larvaire; 89.83 ± 3.80 pour la crysalide). Les adultes sortaient, au cours d'une période de quatre jours, entre 07.00 et 1300hr locales, la pointe journalière se situant entre 07.00 et 10.00 hr. La période qui suit directement la sortie des adultes se laisse classifier en deux phases: la première, d'un caractère très actif et mobile, dure de 10 à 15 min et est suivie de la deuxième, à caractère immobile, qui dure à peu près 1.5 hr. L'accouplement a commencé sans façons 4.35 ± 0.43 jours après la sortie des adultes. Après une période de pré-oviposition de 12.96 ± 0.47 jours, les femelles ont déposé des oeufs en grappes (1.57 ± 0.23 grappes d'oeufs la femelle) regroupant une moyenne de 37 ± 4 oeufs à peu près. La fécundité de chaque femelle s'est révélée de 52 ± 6 oeufs pour une vie adulte moyenne de 18.68 ± 1.76 jours.

Bien que les paramètres révélés laissent croire à une stratégie écologique de la K-sélection, il se peut que S. haemorrhoidalis suivent une stratégie écologique convenable de la r−sélection puisqu'il se reproduit par habitude dans des milieux instables.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bryan, W. J. (1937) Myiasis. J. Am. med. Ass. 109, 573.Google Scholar
Bursell, E. (1958) The water balance of tsetse pupae. Phil. Trans. R. Soc. 241, 179210.Google Scholar
Denno, R. F. and Cothran, W. R. (1976) Competitive interactions and ecological strategies of sarcophagid and calliphorid flies inhabiting rabbit carrion. Ann. ent. Soc. Am. 69, 109113.CrossRefGoogle Scholar
Iwuala, M. O. E. and Onyeka, J. O. A. (1977) The types and distribution patterns of domestic flies in Nsukka, East Central State, Nigeria. Environ. Ent. 6, 4349.CrossRefGoogle Scholar
James, M. T. and Harwood, R. F. (1969) Herms's Medical Entomology, 6th edn.Macmillan, London.Google Scholar
Knipling, E. F. (1936) A comparative study of the first-instar larvae of the genus Sarcophaga (Calliphoridae, Diptera) with notes on biology. J. Parasit. 22, 417.CrossRefGoogle Scholar
Langley, P. A. and Ely, R. (1978) X-ray investigation of gas bubble formation, and water loss in tsetse fly pupae. Physiol. Ent. 3, 303307.CrossRefGoogle Scholar
Lapage, G. (1968) Veterinary Parasitology, 2nd edn.Oliver & Boyd, London.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey.Google Scholar
Madubunyi, L. C. (1979) The ecology and control of domestic and peridomestic flies of Nigeria. In The Control of Arthropod Vectors of Diseases in Nigeria (Edited by Iwuala, M. O. E.), pp. 156161. Barthos, Enugu, Nigeria.Google Scholar
Pianka, E. R. (1970) On r- and K-selection. Am. Nat. 104, 192197.CrossRefGoogle Scholar
Symes, C. B. and Roberts, C. I. (1932) A list of Muscidae and Oestridae causing myiasis in man and animals in Kenya recorded at the Medical Research Laboratory, Nairobi. E. Afr. med. J. 9, 18.Google Scholar
Thevenard, P. (1955) Direct kineradiography on 35 mm film and one application in biological research. Med. Biol. Illustrn 5, 6670.Google Scholar
Townsend, C. H. T. (1938) Manual of Myiology, part VI. São Paulo.Google Scholar
Wilbur, H., Tinkle, D. W. and Collins, J. P. (1974) Environmental certainty, trophic level and resource availability in life history evolution. Am. Nat. 108, 805817.CrossRefGoogle Scholar
Zumpt, F. (1965) Myiasis in Man and Animals in the Old World. Butterworths, London.Google Scholar