Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T08:59:06.883Z Has data issue: false hasContentIssue false

Robustness study of bandpass NGD behavior of ring-stub microstrip circuit under temperature variation

Published online by Cambridge University Press:  23 November 2021

Hongyu Du
Affiliation:
Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, Jiangsu, China
Fayu Wan*
Affiliation:
Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, Jiangsu, China
Sébastien Lalléchère
Affiliation:
Université Clermont Auvergne, Institut Pascal, SIGMA Clermont, Clermont-Ferrand, France
Wenceslas Rahajandraibe
Affiliation:
Aix-Marseille University, CNRS, University of Toulon, IM2NP UMR7334, Marseille, France
Blaise Ravelo
Affiliation:
Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, Jiangsu, China
*
Author for correspondence: Fayu Wan, E-mail: fayu.wan@nuist.edu.cn

Abstract

This paper explores an original study of bandpass (BP) negative group delay (NGD) robustness applied to the ring-stub passive circuit. The proof of concept (PoC) circuit is constituted by a ring associated with the open-end stub implemented in microstrip technology. An innovative experimental setup of a temperature room containing the NGD PoC connected to a vector network analyzer is described. Then, the electrothermal data of S-parameters are measured by varying the ambient or room temperature range from 20 to 60°C, i.e. 40°C maximal variation. The empirical results of the group delay (GD), transmission and reflection coefficient mappings versus the couple (temperature, frequency) highlight how the temperature affects the BP NGD responses. An innovative electrothermal calibration technique by taking into account the interconnection cable influence is developed. The electrothermal robustness analysis is carried out by variations of the NGD center frequency, cut-off frequencies and value in function of the temperature.

Type
Passive Components and Circuits
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, S and Wong, S (1982) Linear pulse propagation in an absorbing medium. Physical Review Letters 48, 738741. doi: 10.1103/PhysRevLett.48.738.CrossRefGoogle Scholar
Ségard, B and Macke, B (1985) Observation of negative velocity pulse propagation. Physics Letters A 109, 213216. doi: 10.1016/0375-9601(85)90305-6.CrossRefGoogle Scholar
Macke, B and Ségard, B (2003) Propagation of light-pulses at a negative group-velocity. European Physical Journal D: Atomic, Molecular and Optical Physics 23, 125141. doi: 10.1140/epjd/e2003-00022-0.CrossRefGoogle Scholar
Munday, JN and Robertson, WM (2007) Observation of negative group delays within a coaxial photonic crystal using an impulse response method. Optics Communications 273, 3236. doi: 10.1016/j.optcom.2006.12.039.CrossRefGoogle Scholar
Eleftheriades, GV, Siddiqui, O and Iyer, AK (2003) Transmission line models for negative refractive index media and associated implementations without excess resonators. IEEE Microwave and Wireless Components Letters 13, 5153. doi: 10.1109/LMWC.2003.808719.CrossRefGoogle Scholar
Siddiqui, OF, Mojahedi, M and Eleftheriades, GV (2003) Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Transactions on Antennas and Propagation 51, 26192625. doi: 10.1109/TAP.2003.817556.CrossRefGoogle Scholar
Siddiqui, OF, Erickson, SJ, Eleftheriades, GV and Mojahedi, M (2004) Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials. IEEE Transactions on Microwave Theory 52, 14491454. doi: 10.1109/TMTT.2004.827018.CrossRefGoogle Scholar
Kokkinos, T, Sarris, CD and Eleftheriades, GV (2005) Periodic finite-difference time-domain analysis of loaded transmission-line negative-refractive-index metamaterials. IEEE Transactions on Microwave Theory 53, 14881495. doi: 10.1109/tmtt.2005.845197.CrossRefGoogle Scholar
Markley, L and Eleftheriades, GV (2010) Quad-band negative-refractive-index transmission-line unit cell with reduced group delay. Electronics Letters 46, 12061208. doi: 10.1049/el.2010.1797.CrossRefGoogle Scholar
Monti, G and Tarricone, L (2009) Negative group velocity in a split ring resonator-coupled microstrip line. Progress in Electromagnetics Research 94, 3347. doi: 10.2528/PIER09052801.Google Scholar
Nesimoglu, T and Sabah, C (2016) A tunable metamaterial resonator using varactor diodes to facilitate the design of reconfigurable microwave circuits. IEEE Transactions on Circuits and Systems II 63, 8993. doi: 10.1109/TCSII.2015.2503058.Google Scholar
Barroso, JJ, Oliveira, JEB, Coutinho, OL and Hasar, UC (2016) Negative group velocity in resistive lossy left-handed transmission lines. IET Microwaves, Antennas & Propagation 10, 808815. doi: 10.1049/iet-map.2017.0357.Google Scholar
Cao, H, Dogariu, A and Wang, LJ (2003) Negative group delay and pulse compression in superluminal pulse propagation. IEEE Journal of Selected Topics in Quantum Electronics 9, 5258. doi: 10.1109/JSTQE.2002.807974.CrossRefGoogle Scholar
Macke, B, Ségard, B and Wielonsky, F (2005) Optimal superluminal systems. Physical Review E 72, 035601(R). doi: 10.1103/PhysRevE.72.035601.CrossRefGoogle ScholarPubMed
Ségard, B and Macke, B (2008) Two-pulse interference and superluminality. Optics Communications 281, 1217. doi: 10.1016/j.optcom.2007.09.007.Google Scholar
Kitano, M, Nakanishi, T and Sugiyama, K (2003) Negative group delay and superluminal propagation: an electronic circuit approach. EEE Journal of Selected Topics in Quantum Electronics 9, 4351. doi: 10.1109/JSTQE.2002.807979.CrossRefGoogle Scholar
Mitchell, MW and Chiao, RY (1997) Negative group delay and “fronts” in a causal system: an experiment with very low-frequency bandpass amplifiers. Physics Letters A 230, 133138. doi: 10.1016/S0375-9601(97)00244-2.CrossRefGoogle Scholar
Mitchell, MW and Chiao, RY (1998) Causality and negative group-delays in a simple bandpass amplifier. American Journal of Physics 66, 1419. doi: 10.1119/1.18813.CrossRefGoogle Scholar
Ravelo, B (Oct. 2014) Similitude between the NGD function and filter gain behaviours. International Journal of Circuit Theory and Applications 42, 10161032. doi: 10.1002/cta.1902.CrossRefGoogle Scholar
Wu, C-T-M and Itoh, T (2014) Maximally flat negative group-delay circuit: a microwave transversal filter approach. IEEE Transactions on Microwave Theory 62, 13301342. doi: 10.1109/TMTT.2014.2320220.CrossRefGoogle Scholar
Zhang, T, Xu, R and Wu, CM (2017) Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit. IEEE Microwave and Wireless Components Letters 27, 921923. doi: 10.1109/LMWC.2017.2745487.CrossRefGoogle Scholar
Qiu, L-F, Wu, L-S, Yin, W-Y and Mao, J-F (2017) Absorptive bandstop filter with prescribed negative group delay and bandwidth. IEEE Microwave and Wireless Components Letters 27, 639641. doi: 10.1109/LMWC.2017.2711572.CrossRefGoogle Scholar
Wang, Z, Cao, Y, Shao, T, Fang, S and Liu, Y (2018) A negative group delay microwave circuit based on signal interference techniques. IEEE Microwave and Wireless Components Letters 28, 290292. doi: 10.1109/LMWC.2018.2811254.CrossRefGoogle Scholar
Liu, G and Xu, J (2017) Compact transmission-type negative group delay circuit with low attenuation. Electronics Letters 53, 476478. doi: 10.1049/el.2017.0328.CrossRefGoogle Scholar
Shao, T, Wang, Z, Fang, S, Liu, H and Fu, S (2017) A compact transmission line self-matched negative group delay microwave circuit. IEEE Access 5, 2283622843. doi: 10.1109/ACCESS.2017.2761890.CrossRefGoogle Scholar
Chaudhary, G, Jeong, Y and Lim, J (2014) Miniaturized dual-band negative group delay circuit using dual-plane defected structures. IEEE Microwave and Wireless Components Letters 24, 521523. doi: 10.1109/LMWC.2014.2322445.CrossRefGoogle Scholar
Shao, T, Fang, S, Wang, Z and Liu, H (2018) A compact dual-band negative group delay microwave circuit. Radio Engineering 27, 10701076. doi: 10.13164/re.2018.1070.Google Scholar
Wan, F, Li, N and Ravelo, B (2020) O = O shape low-loss negative group delay microstrip circuit. IEEE Transactions on Circuits and Systems II 67, 17951799. doi: 10.1109/TCSII.2019.2955109.Google Scholar
Zhou, X, Gu, T, Wu, L, Wan, F, Li, B, Murad, NM, Lalléchère, S and Ravelo, B (2020) S-Matrix and bandpass negative group delay innovative theory of Ti-geometrical shape microstrip structure. IEEE Access 8, 160363160373. doi: 10.1109/ACCESS.2020.3020270.CrossRefGoogle Scholar
Ahn, K-P, Ishikawa, R and Honjo, K (2009) Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits. IEEE Transactions on Microwave Theory 57, 21392147. doi: 10.1109/TMTT.2009.2027082.Google Scholar
Shao, T, Wang, Z, Fang, S, Liu, H and Chen, Z (2020) A full-passband linear-phase band-pass filter equalized with negative group delay circuits. IEEE Access 8, 4333643343. doi: 10.1109/ACCESS.2020.2977100.CrossRefGoogle Scholar
Ravelo, B, Thakur, A, Saini, A and Thakur, P (2015) Microstrip dielectric substrate material characterization with temperature effect. Applied Computational Electromagnetics 30, 13221328.Google Scholar
Ravelo, B (2018) Multiphysics model of microstrip structure under high voltage pulse excitation. IEEE Journal on Multiscale and Multiphysics Computational Techniques 3, 8896. doi: 10.1109/JMMCT.2018.2852681.CrossRefGoogle Scholar
Xu, Z, Ravelo, B and Maurice, O (2019) Multiphysics tensorial network analysis applied to PCB interconnect fatigue under thermal cycle aggression. IEEE Transactions on Electromagnetic Compatibility 61, 12531260. doi: 10.1109/TEMC.2019.2911873.Google Scholar
Thermal room specifications, ESPEC. Available at https://www.espec.cn.Google Scholar