Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T20:54:33.591Z Has data issue: false hasContentIssue false

New extraction method of an equivalent circuit for an inductor in BiCMOS technology including lossy effects

Published online by Cambridge University Press:  07 January 2011

Linh Nguyen Tran
Affiliation:
ETIS Laboratory, CNRS, ENSEA University of Cergy Pontoise, UMR 8051, 6 avenue du Ponceau 95014 Cergy, France.
Emmanuelle Bourdel
Affiliation:
ETIS Laboratory, CNRS, ENSEA University of Cergy Pontoise, UMR 8051, 6 avenue du Ponceau 95014 Cergy, France.
Sebastien Quintanel
Affiliation:
ETIS Laboratory, CNRS, ENSEA University of Cergy Pontoise, UMR 8051, 6 avenue du Ponceau 95014 Cergy, France.
Daniel Pasquet*
Affiliation:
LaMIPS, 2 rue de la Girafe, 14079 Caen, France. Phone: +33 6 33 73 64 99
*
Corresponding author: D. Pasquet Email: d.pasquet@ieee.org

Abstract

In order to perform an accurate design, in particular in non-linear circuit, the equivalent circuit of inductors must be precisely described in a wide frequency band. Many models have been proposed to describe the behavior of inductors on lossy substrate. They consist of a great number of elements, often suggested by physical phenomena. Most of them cannot be extracted from measurements. In this paper, we propose a model composed only of elements that can be analytically extracted from measurement results.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Yu Cao, R.A. et al. : Frequency-independent equivalent-circuit model for on-chip spiral inductors. IEEE, J. Solid-State Circuits, 38 (3) (2003), 419426.CrossRefGoogle Scholar
[2]Murphy, O.H.; McCarthy, K.G.; Delabie, C.J.P.; Murphy, A.C.; Murphy, P.J.: Design of multiple-metal stacked inductors incorporating an extended physical model. IEEE Trans. Microw. Theory Tech., 53 (6) (2005), 20632072.CrossRefGoogle Scholar
[3]Fujishima, M.; Kino, J.: Accurate subcircuit model of an on-chip inductor with a new substrate network, in Proc. Symp. VLSI Circuits, June 17–19, 2004, 376379.Google Scholar
[4]Ragonese, E.; Biondi, T.; Scuderi, A.; Palmisano, G.: A lumped scalable physics – based model for silicon spiral inductors, in Proc. 10th IEEE Int. Symp. EDMO, November 18–19, 2002, 119124.Google Scholar
[5]Lee, K.Y.; Mohammadi, S.; Bhattacharya, P.K.; Katehi, L.P.B.: Compact models based on transmission-line concept for integrated capacitors and inductors. IEEE Trans. Microw. Theory Tech., 54 (12) (2006), 41414148.CrossRefGoogle Scholar
[6]Hasegawa, H.; Furukawa, M.; Yanai, H.: Properties of microstrip line on Si–SiO2 system. IEEE Trans. Microw. Theory Tech., 19 (11) (1971), 869881.CrossRefGoogle Scholar
[7]Reyes, A.C.; El-Ghazaly, S.M.; Dorn, S.; Dydyk, M.; Schroder, D.K.: Silicon as a microwave substrate, in IEEE MTT-S Int. Microwave Symp. Digest, vol. 3, 1994, 17591762.Google Scholar
[8]Milanovic, V.; Ozgur, M.; DeGroot, D.C.; Jargon, J.A.; Gaitan, M.; Zaghloul, M.E.: Characterization of broadband transmission for coplanar waveguides on CMOS silicon substrate. IEEE Trans. Microw. Theory Tech., 46 (5) (1998), 632640.CrossRefGoogle Scholar
[9]Heinrich, W.: Quasi-TEM description of MMIC coplanar lines including conductor-loss effects. IEEE Trans. Microw. Theory Tech., 41 (1993), 4552.CrossRefGoogle Scholar
[10]Islam, M.S.; Tuncer, E.; Neikirk, D.P.: Accurate quasi-static model for conductor loss in coplanar wave guide, in IEEE MTT-S Int. Microwave Symp. Digest, 1993, 959962.Google Scholar
[11]Pfost, M.; Rein, H.-M.; Holzwarth, T.: Modeling substrate effects in the design of high speed Si-bipolar IC's. IEEE J. Solid-State Circuits, 31 (1996), 14931501.CrossRefGoogle Scholar
[12]Benaissa, K. et al. : RF CMOS on high-resistivity substrate for system-on-chip applications. IEEE Trans. Electron Device Lett., 50 (2003), 567576.CrossRefGoogle Scholar
[13]Chyurm Guo, J.C.; Tan, T.Y.: A broadband and scalable model for on-chip inductors incorporating substrate and conductor loss effects. IEEE Trans. Electron Device, 53 (3) (2006), 413421.CrossRefGoogle Scholar
[14]Williams, D.F.; Marks, R.B.: LRM probe-tip calibrations using nonideal standards. IEEE Microw. Theory Tech., 43 (1995), 466469.CrossRefGoogle Scholar
[15]Rockwell, S.K.; Bosco, B.A.: On-wafer characterization de-embedding and transmission line optimization on silicon for millimeter-wave applications, in RFIC Symp. Digest Papers, 12–14 June 2005, 561–564.Google Scholar
[16]Ivan, C.H.L.; Minoru, F.: A new on-chip substrate-coupled inductor model implemented with scalable expressions. IEEE, J. Solid-State Circuits, 41 (11) (2006), 24912499.Google Scholar
[17]Adam, C.; Watson, D.M.; Pascale, F.; Kyuwoon, H.; Andreas, W.: A comprehensive compact-modeling methodology for spiral inductors in silicon-based RFICS. IEEE Microw. Theory Tech., 52 (3) (2004), 849857.Google Scholar
[18]Nguyen Tran, L.; Pasquet, D.; Bourdel, E.; Quintanel, S.: CAD-oriented model of a coplanar line on a silicon substrate including eddy current effects and skin effect. IEEE Trans. Microw. Theory Tech., 56 (3) (2008), 663670.CrossRefGoogle Scholar
[19]Patrick Yue, C.; Simon Wong, S.: On-chip spiral inductors with patterned ground shields for Si-based RF IC's. IEEE J. Solid-State Circuits, 33 (5) (1998), 743752.Google Scholar
[20]Burghartz, J.N.; Rejaei, B.: On the design of RF spiral inductors on silicon. IEEE Trans. Electron Devices, 50 (3) (2003), 718729.CrossRefGoogle Scholar
[21]Horng, T.S.; Wu, J.M.; Yang, L.Q.; Fang, S.T.: A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth. IEEE Trans. Microw. Theory Tech., 51 (12) (2004), 2327–1333.CrossRefGoogle Scholar
[22]Chao, C.-J.; Wong, S.-C.; Kao, C.-H.; Chen, M.-J.; Leu, L.-Y.; Chiu, K.-Y.: Characterization and modeling of on-chip spiral inductors for Si RFICs. IEEE Trans. Semiconduct. Manufact., 15 (2002), 1929.CrossRefGoogle Scholar
[23]Long, J.R.; Copeland, M.A.: The modeling, characterization, and design of monolithic inductors for silicon RFICs. IEEE J. Solid-State Circuits, 32 (3) (1997), 357369.CrossRefGoogle Scholar
[24]Tai, C.M.; Liao, C.N.: A physical model of solenoid inductors on silicon substrates. IEEE Trans. Microw. Theory Tech, 55 (12) (2007), 25792585.CrossRefGoogle Scholar
[25]Ooi, B.L.; Xu, D.X.; Kooi, P.S.; Lin, F.J.: An improved prediction of series resistance in spiral inductor modeling with eddy-current effect. IEEE Trans. Microw. Theory Tech., 50 (9) (2002), 22022206.Google Scholar
[26]Kim, S.; Neikirk, D.P.: Compact equivalent circuit model for the skin effect. IEEE Trans. Microw. Theory Tech., 44 (6) (1996), 18151818.Google Scholar
[27]Melendy, D.; Francis, P.; Pichler, C.; Hwang, K.; Srinivasan, G.; Weisshaar, A.: A new wideband compact model for spiral inductors in FRICs. IEEE Electron Device Lett., 23 (5) (2005), 273275.CrossRefGoogle Scholar