Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:28:40.308Z Has data issue: false hasContentIssue false

Neurospectral computation for the resonant characteristics of microstrip patch antenna printed on uniaxially anisotropic substrates

Published online by Cambridge University Press:  10 February 2016

Lamia Barkat
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Sami Bedra*
Affiliation:
Industrial Engineering Department, University of Khenchela, 40004 Khenchela, Algeria. Phone: +21333857526
Tarek Fortaki
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Randa Bedra
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
*
Corresponding author: S. Bedra Email: bedra_sami@yahoo.fr

Abstract

Modeling and design of rectangular microstrip patch printed on isotropic or anisotropic substrate are accomplished in this paper. The use of spectral domain method in conjunction with artificial neural networks (ANNs) to compute the resonant characteristics of rectangular microstrip patch printed on isotropic or anisotropic substrates. The moment method implemented in the spectral domain offers good accurateness, but its computational cost is high owing to the evaluation of the slowly decaying integrals and the iterative nature of the solution process. The paper introduces the electromagnetic knowledge combined with ANN in the analysis of rectangular microstrip antenna on uniaxially anisotropic substrate to reduce the complexity of the spectral domain method and to minimize the CPU time necessary to obtain the numerical results. The numerical comparison between neurospectral and conventional moment methods shows significant improvements in time convergence and computational cost. Hence, the use of neurospectral approach presented here as a promising fast technique in the design of microstrip antennas.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mishra, R.K.; Patnaik, A.: Neurospectral analysis of coaxial fed rectangular patch antenna, in IEEE Antennas and Propagation Society International Symposium, Salt Lake City, UT, USA, 2000, 10621065.Google Scholar
[2] Thakare, V.V.; Singhal, P.: Microstrip antenna design using artificial neural networks. Int. J. RF Microw. Comput.-Aided Eng., 20 (1) (2010), 7686.CrossRefGoogle Scholar
[3] Devabhaktuni, V.; Mareddy, L.; Vemuru, S.; Cheruvu, V.; Goykhman, Y.; Ozdemir, T.: Sensitivity driven artificial neural network correction models for RF/microwave devices. Int. J. RF Microw. Comput.-Aided Eng., 22 (1) (2012), 3040.CrossRefGoogle Scholar
[4] Zhang, Q.-J.; Gupta, K.C.; Devabhaktuni, V.K.: Artificial neural networks for RF and microwave design-from theory to practice. IEEE Trans. Microw. Theory Tech., 51 (4) (2003), 13391350.CrossRefGoogle Scholar
[5] Kumar, G.; Ray, K.: Broadband Microstrip Antennas, Artech House, London, 2003.Google Scholar
[6] Garg, R.: Microstrip Antenna Design Handbook, Artech House, Canton, 2001.Google Scholar
[7] Gurel, C.; Yazgan, E.: Characteristics of a circular patch microstrip antenna on uniaxially anisotropic substrate. IEEE Trans. Antennas Propag., 52 (10) (2004), 25322537.Google Scholar
[8] Bouttout, F.; Benabdelaziz, F.; Benghalia, A.; Khedrouche, D.; Fortaki, T.: Uniaxially anisotropic substrate effects on resonance of rectangular microstrip patch antenna. Electron. Lett., 35 (4) (1999), 255256.CrossRefGoogle Scholar
[9] Fortaki, T.; Benghalia, A.: Rigorous full-wave analysis of rectangular microstrip patches over ground planes with rectangular apertures in multilayered substrates that contain isotropic and uniaxial anisotropic materials. Microw. Opt. Technol. Lett., 41 (6) (2004), 496500.CrossRefGoogle Scholar
[10] Fortaki, T.; Djouane, L.; Chebara, F.; Benghalia, A.: On the dual-frequency behavior of stacked microstrip patches. IEEE Antennas Wireless Propag. Lett., 7 (2008), 310313.CrossRefGoogle Scholar
[11] Boufrioua, A.; Benghalia, A.: Radiation and resonant frequency of a resistive patch and uniaxial anisotropic substrate with entire domain and roof top functions. Eng. Anal. Bound. Elem., 32 (7) (2008), 591596.Google Scholar
[12] Fortaki, T.; Khedrouche, D.; Bouttout, F.; Benghalia, A.: A numerically efficient full-wave analysis of a tunable rectangular microstrip patch. Int. J. Electron., 91 (1) (2004), 5770.CrossRefGoogle Scholar
[13] Mishra, R.; Patnaik, A.: Neurospectral computation for complex resonant frequency of microstrip resonators. IEEE Microw. Guided Wave Lett., 9 (9) (1999), 351353.CrossRefGoogle Scholar
[14] Mishra, R.; Patnaik, A.: Neurospectral computation for input impedance of rectangular microstrip antenna. Electron. Lett., 35 (20) (1999), 16911693.Google Scholar
[15] Mishra, R.K.; Patnaik, A.: Designing rectangular patch antenna using the neurospectral method. IEEE Trans. Antennas Propag., 51 (8) (2003), 19141921.CrossRefGoogle Scholar
[16] Bedra, S.; Benkouda, S.; Fortaki, T.: Analysis of a circular microstrip antenna on isotropic or uniaxially anisotropic substrate using neurospectral approach. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 33 (1/2) (2014), 567580.Google Scholar
[17] Pozar, D.M.: Microwave Engineering, Addison-Wesley, Reading, MA, 1990, 663670.Google Scholar
[18] Fortaki, T.; Djouane, L.; Chebara, F.; Benghalia, A.: Radiation of a rectangular microstrip patch antenna covered with a dielectric layer. Int. J. Electron., 95 (9) (2008), 989998.CrossRefGoogle Scholar
[19] Tighilt, Y.; Bouttout, F.; Khellaf, A.: Modeling and design of printed antennas using neural networks. Int. J. RF Microw. Comput.-Aided Eng., 21 (2) (2011), 228233.CrossRefGoogle Scholar
[20] Christodoulou, C.; Georgiopoulos, M.: Applications of Neural Networks in Electromagnetics, Artechhouse, Norwood, MA, 2001.Google Scholar
[21] Samaddar, P.; Nandi, S.; Nandy, S.; Sarkar, D.C.; Sarkar, P.P.: Prediction of resonant frequency of a circular patch frequency selective structure using artificial neural network. Indian J. Phys., 88 (4) (2014), 397403.CrossRefGoogle Scholar
[22] Kumar, K.; Gunasekaran, N.: Bandwidth enhancement of a notch square shaped microstrip patch antenna using neural network approach, in International Conference on Emerging Trends in Electrical and Computer Technology, TN, 2011.Google Scholar
[23] Guney, K.; Gultekin, S.: A comparative study of neural networks for input resistance computation of electrically thin and thick rectangular microstrip antennas. J. Commun. Technol. Electron., 52 (5) (2007), 483492.Google Scholar
[24] Raida, Z.: Modeling EM structures in the neural network toolbox of MATLAB. IEEE Antennas Propag. Mag., 44 (6) (2002), 4667.CrossRefGoogle Scholar
[25] Jain, S.K.; Patnaik, A.; Sinha, S.N.: Design of custom-made stacked patch antennas: a machine learning approach. Int. J. Mach. Learn. Cybern., 4 (3) (2013), 189194.CrossRefGoogle Scholar
[26] Chang, E.; Long, S.; Richards, W.: An experimental investigation of electrically thick rectangular microstrip antennas. IEEE Trans. Antennas Propag., 34 (6) (1986), 767772.CrossRefGoogle Scholar
[27] Chattopadhyay, S.; Biswas, M.; Siddiqui, J.Y.; Guha, D.: Rectangular microstrips with variable air gap and varying aspect ratio: improved formulations and experiments. Microw. Opt. Technol. Lett., 51 (1) (2009), 169173.CrossRefGoogle Scholar
[28] Pozar, D.M.: PCAAD 3.0. Personal Computer Aided Antenna Design, Antenna Design Associates, Inc, Leverett, MA, USA, 1996.Google Scholar
[29] Verma, A.: Input impedance of rectangular microstrip patch antenna with iso/anisopropic substrate-superstrate. IEEE Microw. Wireless Compon. Lett., 11 (11) (2001), 456458.CrossRefGoogle Scholar
[30] HFSS: High Frequency Structure Simulator, Ansoft Corp., 2009.Google Scholar