Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T15:10:01.626Z Has data issue: false hasContentIssue false

Modified ground and slotted MIMO antennas for 5G sub-6 GHz frequency bands

Published online by Cambridge University Press:  11 July 2022

Neetu Agrawal
Affiliation:
Department of Electronics and Communication Engineering, GLA University, Mathura, India
Manish Gupta*
Affiliation:
Department of Electronics and Communication Engineering, GLA University, Mathura, India
Sanjay Chouhan
Affiliation:
Department of Electronics and Communication Engineering, Jawaharlal Institute of Technology, Khargone, Borawan, India
*
Author for correspondence: Manish Gupta, E-mail: dr.manish.ece@gmail.com

Abstract

Multiple input multiple output (MIMO) systems, which use multiple antennas to deliver faster data rates, are one of the promising methods in 5G services. 5G is a popular issue among the world's main telecom firms currently. The sub-6 GHz band for 5G applications in various countries lies between 3 and 5 GHz. The sub-6 GHz 5G bands are 3.4–3.8 GHz in Europe, 3.1–3.55 GHz in the USA, and 3.3–3.6 GHz and 4.8–4.99 GHz in China. This paper presents a two-element slotted octagon-shaped antenna operating in the sub-6 GHz band (3.1–4.5 GHz) for 5G applications. A T-formed isolation structure is placed at a ground plane to minimize mutual coupling between MIMO antennas. The proposed MIMO antenna has physical dimensions of 55 × 38 mm2 and an envelope correlation coefficient or correlation of 0.0004 over the entire operating band. The antenna operates at 3.6 GHz, with a return loss of 40.8 dB at the resonance. An antenna prototype has been investigated and proven to be of excellent quality in terms of performance like isolation >20 dB, efficiency >80%, and mean effective gain <−3 dB over the full operating band.

Type
Antenna Design, Modeling and Measurements
Copyright
© The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chouhan, S, Panda, DK, Gupta, M and Singhal, S (2018) Multiport MIMO antennas with mutual coupling reduction techniques for modern wireless transceiver operations: a review. International Journal of RF and Microwave Computer-Aided Engineering 28, e21189.CrossRefGoogle Scholar
Malviya, L, Panigrahi, RK and Kartikeyan, MV (2017) MIMO antennas with diversity and mutual coupling reduction techniques: a review. International Journal of Microwave and Wireless Technologies 9, 17631780.CrossRefGoogle Scholar
Agrawal, N and Gupta, M (2020) Isolation enhancement techniques for UWB-MIMO system: a review. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). IEEE. GLA University Mathura, pp. 113–117.CrossRefGoogle Scholar
Serghiou, D, Khalily, M, Singh, V, Araghi, A and Tafazolli, R (2020) Sub-6 GHz dual-band 8× 8 MIMO antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters 19, 15461550.CrossRefGoogle Scholar
Saurabh, AK and Meshram, MK (2020) Compact sub-6 GHz 5G-multiple-input-multiple-output antenna system with enhanced isolation. International Journal of RF and Microwave Computer-Aided Engineering 30, e22246.CrossRefGoogle Scholar
Chouhan, S, Panda, DK, Kushwah, VS and Mishra, PK (2019) Octagonal-shaped wideband MIMO antenna for human interface device and S-band application. International Journal of Microwave and Wireless Technologies 11, 287296.CrossRefGoogle Scholar
Li, Y, Luo, Y and Yang, G (2019) High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. IEEE Transactions on Antennas and Propagation 67, 38203830.CrossRefGoogle Scholar
Zhao, A and Ren, Z (2018) Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antennas and Wireless Propagation Letters 18, 152156.CrossRefGoogle Scholar
Chouhan, S, Panda, DK, Gupta, M and Singhal, S (2018) Meander line MIMO antenna for 5.8 GHz WLAN application. International Journal of RF and Microwave Computer-Aided Engineering 28, e21222.CrossRefGoogle Scholar
Sun, L, Feng, H, Li, Y and Zhang, Z (2018) Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Transactions on Antennas and Propagation 66, 63646369.CrossRefGoogle Scholar
An, W, Li, Y, Fu, H, Ma, J, Chen, W and Feng, B (2018) Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications. IEEE Antennas and Wireless Propagation Letters 17, 621624.CrossRefGoogle Scholar
Zhang, J, Liu, X, Wang, C, Gan, L, Wang, Y and Sun, L (2021) Compact four-band cactus-shaped antenna for 5G and WLAN applications. Progress in Electromagnetics Research Letters 98, 155163.CrossRefGoogle Scholar
Ren, Z, Zhao, A and Wu, S (2019) MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals. IEEE Antennas and Wireless Propagation Letters 18, 13671371.CrossRefGoogle Scholar
Chen, SC, Chou, LC, Hsu, CI and Li, SM (2020) Compact sub-6-GHz four-element MIMO slot antenna system for 5G tablet devices. IEEE Access 8, 154652154662.CrossRefGoogle Scholar
Hei, YQ, He, JG and Li, WT (2021) Wideband decoupled 8-element MIMO antenna for 5G mobile terminal applications. IEEE Antennas and Wireless Propagation Letters 20, 1448–1452.CrossRefGoogle Scholar
Kumar Saurabh, A, Singh Rathore, P and Kumar Meshram, M (2020) Compact wideband four-element MIMO antenna with high isolation. Electronics Letters 56, 117119.CrossRefGoogle Scholar
Singh, HS, Pandey, GK, Bharti, PK and Meshram, MK (2015) A compact dual-band diversity antenna for WLAN applications with high isolation. Microwave and Optical Technology Letters 57, 906912.CrossRefGoogle Scholar
Xia, X-X, Chu, Q-X and Li, J-F (2013) Design of a compact wideband MIMO antenna for mobile terminals. Progress in Electromagnetics Research C 41, 163174.CrossRefGoogle Scholar
Thakur, E, Jaglan, N, Gupta, SD and Kanaujia, BK (2019) A compact notched UWB MIMO antenna with enhanced performance. Progress in Electromagnetics Research C 91, 3953.CrossRefGoogle Scholar
Suriya, I and Anbazhagan, R (2019) Inverted-A based UWB MIMO antenna with a triple-band notch and improved isolation for WBAN applications. AEU-International Journal of Electronics and Communications 99, 2533.Google Scholar
Gorai, A, Dasgupta, A and Ghatak, R (2018) A compact quasi-self-complementary dual band-notched UWB MIMO antenna with enhanced isolation using Hilbert fractal slot. AEU-International Journal of Electronics and Communications 94, 3641.Google Scholar
Chouhan, S, Panda, DK, Kushwah, VS and Singhal, S (2019) Spider-shaped fractal MIMO antenna for WLAN/WiMAX/Wi-Fi/Bluetooth/C-band applications. AEU-International Journal of Electronics and Communications 110, 152871.Google Scholar
Agrawal, N, Gupta, M and Chauhan, S (2021) Design and simulation of MIMO antenna for low frequency 5G band application. 2021 2nd Global Conference for Advancement in Technology (GCAT) Banglore. IEEE, pp. 1–4.CrossRefGoogle Scholar
Chang, L and Wang, H (2021) Miniaturized wideband four-antenna module based on dual-mode PIFA for 5G 4× 4 MIMO applications. IEEE Transactions on Antennas and Propagation 69, 5297–5304.CrossRefGoogle Scholar
Li, T and Chen, Z (2018) Metasurface-based shared-aperture 5G S-/K-band antenna using characteristic mode analysis. IEEE Transactions on Antennas and Propagation 66, 67426750.CrossRefGoogle Scholar
Singhal, S, Singh, P and Singh, AK (2016) Asymmetrically CPW-fed octagonal Sierpinski UWB fractal antenna. Microwave and Optical Technology Letters 58, 17381745.CrossRefGoogle Scholar
Zhang, Y and Brown, AK (2011) Octagonal ring antenna for a compact dual-polarized aperture array. IEEE Transactions on Antennas and Propagation 59, 39273932.CrossRefGoogle Scholar
Tripathi, S, Mohan, A and Yadav, S (2014) A multi-notched octagonal-shaped fractal UWB antenna. Microwave and Optical Technology Letters 56, 24692473, 28.CrossRefGoogle Scholar
Dikmen, CM, Çimen, S and Çakır, G (2014) Planar octagonal-shaped UWB antenna with reduced radar cross-section. IEEE Transactions on Antennas and Propagation 62, 29462953.CrossRefGoogle Scholar
Li, J, Zhang, X, Wang, Z, Chen, X, Chen, J, Li, Y and Zhang, A (2019) Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals. IEEE Access 7, 7163671644.CrossRefGoogle Scholar
Desai, A, Patel, R, Upadhyaya, T, Kaushal, H and Dhasarathan, V (2020) Multiband inverted E, and U shaped compact antenna for digital broadcasting, wireless, and sub 6 GHz 5G applications. AEU-International Journal of Electronics and Communications 123, 153296.Google Scholar
Wong, K-L, Chang, H-J, Chen, J-Z and Wang, K-Y (2020) Three wideband monopolar patch antennas in a Y-shape structure for 5G multi-input–multi-output access points. IEEE Antennas and Wireless Propagation Letters 19, 393397.CrossRefGoogle Scholar
Ban, Y-L, Li, C, Sim, C-YD, Wu, G and Wong, K-L (2016) 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access 4, 29812988.CrossRefGoogle Scholar
Yang, M and Zhou, J (2020) A compact pattern diversity MIMO antenna with enhanced bandwidth and high-isolation characteristics for WLAN/5G/WiFi applications. Microwave and Optical Technology Letters 62, 23532364.CrossRefGoogle Scholar
Alkurt, FO, Ozdemir, ME, Akgol, O and Karaaslan, M (2021) Ground plane design configuration estimation of 4.9 GHz reconfigurable monopole antenna for desired radiation features using artificial neural network. International Journal of RF and Microwave Computer-Aided Engineering 31, e22734.CrossRefGoogle Scholar
Ozdemir, E, Akgol, O, Alkurt, FO, Karaaslan, M, Abdulkarim, YI and Deng, L (2020) Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences 10, 378.CrossRefGoogle Scholar
Alkurt, FO, Karaaslan, M, Furat, M, Ünal, E and Akgöl, O (2021) Monopole antenna integrated cavity resonator for microwave imaging. Optical Engineering 60, 013106.CrossRefGoogle Scholar