Published online by Cambridge University Press: 11 July 2022
Multiple input multiple output (MIMO) systems, which use multiple antennas to deliver faster data rates, are one of the promising methods in 5G services. 5G is a popular issue among the world's main telecom firms currently. The sub-6 GHz band for 5G applications in various countries lies between 3 and 5 GHz. The sub-6 GHz 5G bands are 3.4–3.8 GHz in Europe, 3.1–3.55 GHz in the USA, and 3.3–3.6 GHz and 4.8–4.99 GHz in China. This paper presents a two-element slotted octagon-shaped antenna operating in the sub-6 GHz band (3.1–4.5 GHz) for 5G applications. A T-formed isolation structure is placed at a ground plane to minimize mutual coupling between MIMO antennas. The proposed MIMO antenna has physical dimensions of 55 × 38 mm2 and an envelope correlation coefficient or correlation of 0.0004 over the entire operating band. The antenna operates at 3.6 GHz, with a return loss of 40.8 dB at the resonance. An antenna prototype has been investigated and proven to be of excellent quality in terms of performance like isolation >20 dB, efficiency >80%, and mean effective gain <−3 dB over the full operating band.