Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:34:57.990Z Has data issue: false hasContentIssue false

Millimeter-wave beam-steering high gain array antenna by utilizing metamaterial zeroth-order resonance elements and Fabry-Perot technique

Published online by Cambridge University Press:  04 April 2018

Asghar Bakhtiari
Affiliation:
Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Ramezan Ali Sadeghzadeh
Affiliation:
Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Mohammad Naser-Moghaddasi*
Affiliation:
Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Corresponding author: M. Naser-Moghaddasi Email: mn.moghaddasi@srbiau.ac.ir

Abstract

Millimeter-wave (mm-wave) beam-steering antennas are preferred for reducing the disruptive effects, such as those caused by high atmospheric debilitation in wireless communications systems. In this work, a compact broadband antenna array with a low loss feed network design is introduced. To overcome the short-range effects on mm-wave frequencies, a feed network – with a modified Butler matrix and a compact zeroth-order resonance antenna element – has been designed. Furthermore, the aperture feed technique has been utilized to provide a broadside stable pattern and improve the delivered gain. A Fabry-Perot layer without the height of the air layer is used. Taking advantage of this novel design, a broadband and compact beam-steering array antenna – capable of covering impedance bandwidths (from 33.84 to 36.59 GHz) and scanning a solid angle of about ~94°, with a peak gain of 17.6 dBi – is attained.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ko, S.T.; Lee, J.H.: Aperture coupled metamaterial patch antenna with broad E-plane beamwidth for millimeter wave application, in 2013 IEEE Antennas and Propagation Society Int. Symp. (APSURSI), Orlando, FL, 2013, 17961797. doi: 10.1109/APS.2013.6711557.Google Scholar
[2]Lee, C.-H.; Lee, J.-H.: Millimeter-wave wide beamwidth aperture–coupled antenna designed by mode synthesis. Microw. Opt. Technol. Lett., 57 (2015), 12551259. doi: 10.1002/mop.29058.Google Scholar
[3]Ko, S.T.; Lee, J.H.: Hybrid zeroth-order resonance patch antenna with broad E-plane beamwidth. IEEE Trans. Antennas Propag., 61 (1) (2013), 1925. doi: 10.1109/TAP.2012.2220315.Google Scholar
[4]Artemenko, A.; Mozharovskiy, A.; Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Ssorin, V.: Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas. IEEE Antennas Wireless Propag. Lett., 12 (2013), 11881191. doi: 10.1109/LAWP.2013.2282212.Google Scholar
[5]Gheethan, A.; Jo, M.C.; Guldiken, R.; Mumcu, G.: Microfluidic based Ka-band beam-scanning focal plane array. IEEE Antennas Wireless Propag. Lett., 12 (2013), 16381641. doi: 10.1109/LAWP.2013.2294153.Google Scholar
[6]Karamzadeh, S.; Rafii, V.; Kartal, M.; Virdee, B.S.: Compact and broadband 4 × 4 SIW butler matrix with phase and magnitude error reduction. IEEE Microw. Wireless Compon. Lett., 25 (12) (2015), 772774. doi: 10.1109/LMWC.2015.2496785.Google Scholar
[7]Karamzadeh, S.; Rafii, V.; Kartal, M.; Virdee, B.S.: Modified circularly polarised beam steering array antenna by utilised broadband coupler and 4 × 4 butler matrix. IET Microw. Antennas Propag., 9 (9) (2015), 975981. doi: 10.1049/iet-map.2014.0768.CrossRefGoogle Scholar
[8]Haraz, O.M.; Sebak, A.R.: Two-layer butterfly-shaped microstrip 4 × 4 Butler matrix for ultra-wideband beam-forming applications, in 2013 IEEE Int. Conf. on Ultra-Wideband (ICUWB), Sydney, NSW, 2013, 16. doi: 10.1109/ICUWB.2013.6663812.Google Scholar
[9]Alreshaid, A.T.; Sharawi, M.S.; Podilchak, S.; Sarabandi, K.: Compact millimeter-wave switched-beam antenna arrays for short range communications. Microw. Opt. Technol. Lett., 58 (2016), 19171921. doi: 10.1002/mop.29940.Google Scholar
[10]Hu, W. et al. : 94 GHz dual-reflector antenna with reflectarray subreflector. IEEE Trans. Antennas Propag., 57 (10) (2009), 30433050.Google Scholar
[11]Von Trentini, G.: Partially reflecting sheet arrays. IRE Trans. Antennas Propag., 4 (4) (1956), 666671.Google Scholar
[12]Sauleau, R.; Coquet, P.; Matsui, T.: Low-profile directive quasi-planar antennas based on millimetre wave Fabry–Perot cavities. IEE Proc. Microw. Antennas Propag., 50 (4) (2003), 274278.Google Scholar
[13]Lee, Y.; Lu, X.; Hao, Y.; Yang, S.; Evans, J.R.G.; Parini, C.G.: Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures. IEEE Trans. Antennas Propag., 57 (10) (2009), 28932903.Google Scholar
[14]Tan, G.N.; Yang, X.X.; Xue, H.G.; Lu, Z.-L.: A dual-polarized Fabry-Perot cavity antenna at Ka band with broadband and high gain. Prog. Electromagn. Res. C, 60 (2015), 179186.Google Scholar
[15]Hosseini, A.; Capolino, F.; De Flaviis, F.: Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a self-sustained all-metal cap with FSS. IEEE Trans. Antennas Propag., 63 (3) (2015), 909921.CrossRefGoogle Scholar
[16]Hosseini, S.A.; Capolino, F.; De Flaviis, F.: Q-band single layer planar Fabry-Perot cavity antenna with single integrated-feed. Prog. Electromagn. Res. C, 52 (2014), 135144.Google Scholar
[17]James, J.R.; Hall, P.S. (ed.) Handbook of Microstrip Antennas, vol. 1 and 2, Electromagnetic Waves, IET Digital Library, London, U.K, Peter Peregrinus, 1989.Google Scholar