Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:14:13.727Z Has data issue: false hasContentIssue false

Efficient 2-D leaky-wave antenna configurations based on graphene metasurfaces

Published online by Cambridge University Press:  09 May 2017

Walter Fuscaldo*
Affiliation:
Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy. Phone: +39 320 7858896 Institut d’Électronique et de Télécommunications de Rennes 1, UMR CNRS 6164 Université de Rennes 1, 35000 Rennes, France
Paolo Burghignoli
Affiliation:
Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy. Phone: +39 320 7858896
Paolo Baccarelli
Affiliation:
Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy. Phone: +39 320 7858896
Alessandro Galli
Affiliation:
Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy. Phone: +39 320 7858896
*
Corresponding author: W. Fuscaldo Email: walter.fuscaldo@uniroma1.it

Abstract

Different configurations of leaky-wave antennas (LWAs) based on graphene metasurfaces are studied. The electronic properties of a graphene metasurface in the low THz range are investigated in details in order to discuss the reconfigurability features of the presented structures. Simple exact formulas for evaluating the ohmic losses related to the surface plasmon polariton (SPP) propagation along a suspended graphene sheet, and the relevant figures of merit of SPP propagating over a generic metasurface are given. Such formulas allow us to explain the low efficiency of reconfigurable antennas based on SPPs along graphene metasurfaces. Then, the radiative performance and relevant losses of graphene Fabry–Perot cavity antennas (FPCAs) based on non-plasmonic leaky waves (LWs) are investigated and compared with previous solutions based on SPPs. In particular, a single-layer structure, i.e. a grounded dielectric slab covered with a graphene metasurface, and a multilayered structure, i.e. a substrate–superstrate antenna in which the graphene metasurface is embedded at a suitable position within the substrate, are considered in detail. The results show that the proposed LW solutions in graphene FPCAs allow for considerably reducing the ohmic losses, thus significantly improving the efficiency of the proposed radiators.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pendry, J.B.; Schurig, D.; Smith, D.R.: Controlling electromagnetic fields. Science, 312 (2006), 17801782.CrossRefGoogle ScholarPubMed
[2] Engheta, N.; Ziolkowski, R.W. (eds.): Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, Hoboken, NJ, USA, 2006.CrossRefGoogle Scholar
[3] Alù, A.; Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E, 72 (2005), 016623.CrossRefGoogle ScholarPubMed
[4] Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M.: Metasurfing: addressing waves on impenetrable metasurfaces. Antennas Wireless Propag. Lett., 10 (2012), 14991502.CrossRefGoogle Scholar
[5] Blanco, D.; Rajo-Iglesias, E.; Maci, S.; Llombart, N.: Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces. IEEE Trans. Antennas Propag., 63 (3) (2015), 891900.Google Scholar
[6] Di Ruscio, D.; Baccarelli, P.; Burghignoli, P.; Galli, A.: Omnidirectional radiation in the presence of homogenized metasurfaces. Progr. Electromagn. Res., 150 (2015), 145161.Google Scholar
[7] Chen, H.T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Taylor, A.J.; Averit, R.D.: Active terahertz metamaterial devices. Nat. Lett., 444 (2006), 597600.Google Scholar
[8] Jansen, C.; Al-Naib, A.I.; Born, N.; Koch, M.: Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett., 98 (2011), 051109.Google Scholar
[9] Siegel, P.: Terahertz technology. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 910927.CrossRefGoogle Scholar
[10] Geim, A.K.; Novoselov, K.S.: The rise of graphene. Nat. Mater., 6 (2007), 183191.Google Scholar
[11] Raza, H. (ed.): Graphene Nanoelectronics. Springer, Berlin, 2012.Google Scholar
[12] Vakil, A.; Engheta, N.: Transformation optics using graphene. Science, 332 (2011), 12911294.Google Scholar
[13] Hanson, G.W.: Dyadic Green’ s functions and guided surface waves for a surface conducitivity model of graphene. Appl. Phys. Lett., 103 (6) (2008), 064302.Google Scholar
[14] Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A.: Complex mode spectra of graphene-based planar structures for THz applications. J. Infrared Milli. Terahz. Waves, 36 (8) (2015), 720733.Google Scholar
[15] Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A.: A reconfigurable substrate-superstrate graphene-based leaky-wave THz antenna. Antenna Wireless Propag. Lett., 15 (2016), 15451548.Google Scholar
[16] He, X.: Tunable terahertz graphene materials. Carbon, 82 (2015), 229237.CrossRefGoogle Scholar
[17] Maier, S.A.: Plasmonics: Fundamentals and Applications, Springer, New York, NY, USA, 2007.Google Scholar
[18] Tamagnone, M.; Gómez-Díaz, J.S.; Mosig, J.R.; Perruisseau-Carrier, J.: Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett., 101 (2012), 2141202.CrossRefGoogle Scholar
[19] Esquius-Morote, M.; Gómez-Díaz, J.S.; Perruisseau-Carrier, J.: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. THz Sci. Technol., 4 (1) (2014), 116122.CrossRefGoogle Scholar
[20] Wang, X.C.; Zhao, W.S.; Hu, J.; Yin, W.Y.: Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans. Nanotechnol., 4 (1) (2015), 6269.Google Scholar
[21] Shapoval, O.V.; Gómez-Díaz, J.S.; Perruisseau-Carrier, J.; Mosig, J.R.; Nosich, A.I.: Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range. IEEE Trans. THz Sci. Technol., 3 (5) (2013), 666674.CrossRefGoogle Scholar
[22] Llatser, I. et al. : Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering, 21 (4) (2012), 946953.Google Scholar
[23] Berini, P.: Figures of merit for surface plasmon waveguides. Opt. Exp., 14 (26) (2006), 13030.Google Scholar
[24] Galli, A.; Baccarelli, P.; Burghignoli, P.: Leaky-Wave Antennas, Wiley Encyclopedia of Electrical and Electronics Engineering, no. 1222, pp. 1–20. Wiley Online Library, New York, NY, USA, 2016.Google Scholar
[25] Jackson, D.R.; Oliner, A.A.: A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag., 36 (7) (1988), 905910.Google Scholar
[26] Sorrentino, R.: Transverse resonance technique, in Itoh, T. (ed.), Numerical Techniques for Microwave and Millimeter-wave Passive Structures, Wiley, New York, NY, USA, 1989.Google Scholar
[27] Valerio, G.; Jackson, D.R.; Galli, A.: Formulas for the number of surface waves on layered structures. IEEE Trans. Microw. Theory Technol., 58 (7) (2010), 17861795.CrossRefGoogle Scholar
[28] Lovat, G.; Burghignoli, P.; Celozzi, S.: A tunable ferro-electric antenna for fixed-frequency scanning applications. IEEE Antennas Wireless Propag. Lett., 5 (2006), 353356.CrossRefGoogle Scholar
[29]CST products, Germany, 2014 [Online]. Available: http://www.cst.com Google Scholar
[30] Lovat, G.; Burghignoli, P.; Jackson, D.R.: Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag., 54 (5) (2006), 14421452.CrossRefGoogle Scholar
[31] Baccarelli, P.; Di Nallo, C.; Frezza, F.; Galli, A.; Lampariello, P.: Attractive features of leaky-wave antennas based on ferrite-loaded open waveguides, in Proc. Antennas and Propagation Soc. Int. Symp., Montreal, QC, Canada, July 13–18, 1997, 14421445.Google Scholar
[32] Di Nallo, C.; Frezza, F.; Galli, A.; Lampariello, P.: Rigorous evaluation of ohmic loss effects for accurate design of traveling-wave antennas. J. Electromagn. Waves Appl., 12 (1) (1988), 3958.CrossRefGoogle Scholar
[33] Pozar, D.M.: Microwave Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2009.Google Scholar
[34] Luukkonen, O. et al. : Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag., 56 (6) (2008), 16241632.CrossRefGoogle Scholar
[35] Yakovlev, A.B.; Padooru, Y.R.; Hanson, G.W.; Mafi, A.; Karbasi, S.: A generalized additional boundary condition for mushroom-type and bed-of-nails-type wire media. IEEE Trans. Microw. Theory Tech., 59 (3) (2011), 527532.Google Scholar
[36] Tretyakov, S.A.: Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, USA, 2003.Google Scholar
[37] Yakovlev, A.B. et al. : Analytical modeling of surface waves on high impedance surfaces, in Zouhdi, S.; Sihvola, A.; Vinogradov, A.P. (eds.), Metamaterials and Plasmonics: Fundamentals, Modeling, Applications, Springer, Berlin, Germany, 2009, 239254.Google Scholar
[38] Mas'ud, F.A.; Cho, H.; Lee, T.; Rho, H.; Seo, T.H.; Kim, M.J.: Domain size engineering of CVD graphene and its influence on physical properties. J. Phys. D: Appl. Phys., 49 (2016), 205504.Google Scholar
[39] Deokar, G. et al. : Towards high quality CVD graphene growth and transfer. Carbon, 89 (2015), 8292.Google Scholar
[40] Li, X. et al. : Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324 (5932) (2009), 13121314.Google Scholar
[41] Li, X. et al. : Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett., 9 (12) (2009), 43594363.Google Scholar
[42] Wan, H.; Cai, W.; Wang, W.; Jiang, S.; Xu, S.; Liu, J.: High-quality monolayer graphene for bulk laser mode-locking near 2 μm. Opt. Quantum Electron., 48 (1) (2016), 18.Google Scholar
[43] Wan, X.; Zhou, N.; Gan, L.; Li, H.; Ma, Y.; Zhai, T.: Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon, 110 (2016), 384389.Google Scholar
[44] Ng, A.M.H.; Wang, Y.; Lee, W.C.; Teck, L.C.; Loh, K.P.; Low, H.Y.: Patterning of graphene with tunable size and shape for microelectrode array devices. Carbon, 67 (2013), 390397.Google Scholar