Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:38:16.612Z Has data issue: false hasContentIssue false

Design and analysis of a high-power radial multi-way combiner

Published online by Cambridge University Press:  16 October 2013

Akhilesh Jain*
Affiliation:
RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore452013, MP, India. Phone: +91 731 2442725
Alok K. Gupta
Affiliation:
RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore452013, MP, India. Phone: +91 731 2442725
Deepak Kumar Sharma
Affiliation:
RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore452013, MP, India. Phone: +91 731 2442725
Pundlik Rama Hannurkar
Affiliation:
RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore452013, MP, India. Phone: +91 731 2442725
Surya Kant Pathak
Affiliation:
Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar382 428, Gujarat, India
*
Corresponding author: A. Jain Email: ajain@rrcat.gov.in

Abstract

In this paper, the design analysis of a multi-way and high-power radial combiner is presented. This combiner incorporates a rigid stripline-type combining structure. This analysis, based on an equivalent circuit model and segmentation of the radial transmission line, provides simple design formulae. The developed methodology, after fine-tuning with the help of an electromagnetic full-wave simulator, is physically demonstrated by developing a high-power (16 kW average) and high combining-efficiency (98.9%) 16-way combiner at the center frequency of 505.8 MHz. Its efficient and repeatable performance, fabrication-friendly structure, and absence of the heat-related problem, caused by the isolation resistor, are the main features of this design.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Raab, F. et al. : Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 814826.CrossRefGoogle Scholar
[2]Cripps, S.: RF Power Amplifiers for Wireless Communication, 2nd ed., Artech House Inc., Norwood, MA, USA, 2006.Google Scholar
[3]Jain, A. et al. : Design and characterization of 50 kW solid-state RF amplifier. Int. J. Microw. Wirel. Technol., 4 (6) (2012), 595603.CrossRefGoogle Scholar
[4]Marchand, P.; Ruan, T.; Ribeiro, F.; Lopes, R.: SOLEIL RF system. Phys. Rev. Spec. Top., Accel. Beams, 10 (11) (2007), 112001–112001.Google Scholar
[5]Galani, Z.; Lampen, J.L.; Temple, S.J.: Single-frequency analysis of radial and planer amplifier combiner circuits. IEEE Trans. Microw. Theory Tech., 7 (29) (1981), 642654.Google Scholar
[6]Gupta, M.: Degradation of power combining efficiency due to variability among signal sources. IEEE Trans. Microw. Theory Tech., 40 (5) (1992), 10311034.Google Scholar
[7]York, R.: Some considerations for optimal efficiency and low noise in large power combiners. IEEE Trans. Microw. Theory Tech., 49 (8) (2001), 14771482.Google Scholar
[8]Ernst, R.; Camisa, R.; Presser, A.: Graceful degradation of matched N port power amplifier combiners, in Microwave Symp. Digest, 1977 IEEE MTT-S Int., San Diego, CA, USA, 1977, 174177.Google Scholar
[9]Darry, M.: Symmetrical combiner analysis using S parameters. IEEE Trans. Microw. Theory Tech., 30 (1982), 268277.Google Scholar
[10]Colantonio, P.; Giannini, F.; Limiti, E.: High Efficiency RF and Microwave Solid State Power Amplifiers. Wiley, Chichester, Great Britain, 2009.Google Scholar
[11]Russell, K.: Microwave power combining techniques. IEEE Trans. Microw. Theory Tech., 27 (1979), 472478.Google Scholar
[12]Shapiro, E.S.; Xu, J.; Nagra, A.S.; Williams, F., Mishra, U.K.; York, R.A.: A high-efficiency traveling-wave power amplifier topology using improved power-combining techniques. IEEE Microw. Guid. Wave Lett., 8 (3) (1998), 133135.CrossRefGoogle Scholar
[13]Bert, A.G.; Kaminsky, D.: The traveling-wave divider/combiner. IEEE Trans Microw. Theory Tech., 28 (12) (1980), 14681473.Google Scholar
[14]Langlois, M.; Peillex-Delphe, G.; Buge, J.: Resonant high power combiners, in Particle Accelerator Conf. PAC05, Knoxville, Tennessee, 2005, 3970–3972.Google Scholar
[15]Chen, H.; Ji, X.F.; Jiang, L.J.; Zhang, Y.X.: Design and implementation of an x-band pulsed solid-state power amplifier with high power and high efficiency using radial waveguide combiner. Progr. Electromagn. Res. C, 21 (2011), 113127.CrossRefGoogle Scholar
[16]Song, K.; Fan, Y.; He, Z.: Broadband radial waveguide spatial combiner. IEEE Microw. Wirel. Compon. Lett., 18 (2) (2008), 7375.Google Scholar
[17]Abouzahra., M.D.; Gupta, K.C.: Multiport power divider and combiner circuits using circular microstrip disk configurations. IEEE Trans. Microw. Theory Tech., 35 (12) (1987), 12961302.Google Scholar
[18]Pérez, F. et al. : High power cavity combiner for RF amplifiers, in European Particle Accelerator Conf. EPAC06, Edinburgh, Scotland, 2006, 3215–3217.Google Scholar
[19]Wilkinson, E.: An N-way hybrid power divider. IRE Trans. Microw. Theory Tech., 13 (1960), 116118.Google Scholar
[20]Taub, J.; Kurpis, G.: A more general N-way hybrid power divider. IEEE Trans Microw. Theory Tech., 17 (1969), 406408.CrossRefGoogle Scholar
[21]Nagai, N.; Ono, K.: New N-way hybrid power dividers. IEEE Trans Microw. Theory Techn., 25 (1977), 10081012.CrossRefGoogle Scholar
[22]Yi, K.; Kang, B.: Modified Wilkinson power divider for nth harmonic suppresion. IEEE Microw. Wirel. Compon. Lett., 13 (5) (2003), 178180.Google Scholar
[23]Wu, Y.-J.: A wide-band multiport planar power-divider design using matched sectorial components in radial arrangement. IEEE Trans. Microw. Theory Tech., 46 (1998), 10721078.Google Scholar
[24]Affandi, A.M.; Milyani, A.M.: A novel exponential power combiner/divider. IEEE Trans. Microw. Theory Tech., 37 (2) (1989), 400405.CrossRefGoogle Scholar
[25]Gysel, U.: A new n way power divider/combiner suitable for high power applications, in IEEE MTT-S Int. Microwave Symp Dig, 1975, 116–118.Google Scholar
[26]Swift, G.: A comprehensive technique for the radial power combiner, in IEEE MTT-S Int. Microwave Symp. Digest, 1988, 279–281.Google Scholar
[27]Kalokitis, D.; Fathy, A.: Analysis and design of a 30 way radial combiner for Ku band application. RCA Rev., 47 (1986), 487508.Google Scholar
[28]Hong, Y.-P.; Kimball, D.F.; Asbeck, P.M.; Yook, J.-G.; Larson, L.E.: Single-ended and differential radial power combiners implemented with a compact broadband probe. IEEE Trans. Microw. Theory Tech., 58 (6) (2010), 15651572.Google Scholar
[29]Schellenberg, J.; Cohn, M.: A wideband radial power combiner for FET power amplifiers, in ISSCC Digest of Technical Papers, February 1978, 164–166.Google Scholar
[30]Belohoubek, E.: 30-way radial combiner for miniature GaAsFET power amplifiers, in IEEE MTT-S Int. Microwave Symp. Digest, 1986, 515–518.Google Scholar
[31]Fathy, A.; Lee, S.-W.; Kalokitis, D.: A simplified design approach for radial power combiners. IEEE Trans. Microw. Theory Tech., 54 (2006), 247255.Google Scholar
[32]Villiers, D.; Walt, W.; Meyer, P.: Design of a ten-way conical transmission. IEEE Trans. Microw. Theory Tech., 55 (2007), 302308.CrossRefGoogle Scholar
[33]Li, X.; Liu, Q.; Zhang, J.: A high-power low-loss multiport radial waveguide power divider. Progr. Electromagn. Res. Lett., 31 (2012), 389398.Google Scholar
[34]Denoual, J.-M.; Peden, A.; Della, B.; Fraysse, J.-P.: 16-way radial divider/combiner for solid state power amplifiers in the K Band, in 38th European Microwave Conf., 2008. EuMC 2008, 2008, 345–348.Google Scholar
[35]Song, K.; Xue, Q.: Ultra-wideband 12-way coaxial waveguide power divider with rotated electric field mode. IET Microw. Antennas Propag., 5 (5) (2011), 512518.CrossRefGoogle Scholar
[36]Bialkowski, M.E.; Waris, V.: Electromagnetic model of a planar radial-waveguide divider/combiner incorporating probes. IEEE Trans. Microw. Theory Techn., 41 (6) (1993), 11261134.Google Scholar
[37]Simons, R.N.; Ponchak, G.E.: Coax-to-channelised coplanar waveguide in-phase N-way, radial power divider. Electron. Lett., 26 (11) (1990), 254255.Google Scholar
[38]Chen, Y.-J.; Pang, Y.-H.; Wu, R.-B.: The use of symmetry to simplify the mixed-potential integral-equation method with application to N-way radial power dividers/combiners with isolation resistors. IEEE Trans. Microw. Theory Tech., 47 (9) (1999), 16091616.Google Scholar
[39]Rozzi, T.; Morini, A.; Venanzoni, G.; Farina, M.: Full-wave analysis of N-way power dividers by eigenvalue decomposition. IEEE Trans Microw. Theory Tech., 57 (5) (2009), 11561162.Google Scholar
[40]Corporation, A.: Microwave office: User Guide., http://www.awrcorp.com (2009).Google Scholar
[41]Marcuvitz, N.: Waveguide Handbook, Peter Peregrnius P. Ltd on behalf of IET, McGraw-Hill, UK, 1951, 2947.Google Scholar
[42]Ramo, S.; Whinnery, J.; Duzer, T.: Fields and Waves in Communication Electronics, 3rd ed., Wiley, India, 2007.Google Scholar
[43]Sechi, F.; Bujatti, M.: Solid-State Microwave High-Power Amplifier, 1st ed., Artech House Inc., Norwood, MA, 2009.Google Scholar
[44]Jain, A.; Sharma, D.; Gupta, A.; Hannurkar, P.: Design of high power radio frequency radial combiner for proton accelerator. Rev. Sci. Instrum., 80 (016106) (2009), 016106-1016106-2.Google Scholar
[45]Abrie, P.: Design of Impedance-matching Networks for Radio Frequency and Microwave Amplifier. MA Artech House, Dedham, 1985.Google Scholar
[46]Somlo, P.: The computation of coaxial step capacitances. IEEE Trans. Microw. Theory Tech., 15 (1) (1967), 4853.Google Scholar
[47]Williamson, A.: Radial line/coaxial line stepped junction. IEEE Trans. Microw. Theory Tech., 33 (1985), 56.Google Scholar
[48]Jain, A. et al. : Modular 20 kW solid state RF amplifier for Indus-2 syncrotron radiation source. Nucl. Instrum. Methods Phys. Res. A, 676 (2012), 7483.Google Scholar