Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:16:48.089Z Has data issue: false hasContentIssue false

Comparative study of RF MEMS micro-contact materials

Published online by Cambridge University Press:  22 February 2012

Adrien Broué*
Affiliation:
NOVAMEMS, 10 avenue de l'Europe, 31520 Ramonville Saint Agne, France. Phone: +33 561274688. LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse, France. Université de Toulouse UPS, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Jérémie Dhennin
Affiliation:
NOVAMEMS, 10 avenue de l'Europe, 31520 Ramonville Saint Agne, France. Phone: +33 561274688.
Pierre-Louis Charvet
Affiliation:
CEA-LETI, MINATEC, 3 parvis Louis Néel, 38054 Grenoble Cedex 9, France.
Patrick Pons
Affiliation:
LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse, France. Université de Toulouse UPS, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Nourredine Ben Jemaa
Affiliation:
IPR-Université de Rennes, CNRS 6251, 263 av. Général Leclerc, 35042 Rennes Cedex, France.
Peter Heeb
Affiliation:
NTB Interstate University of Applied Sciences of Technology, Werdenbergstrasse 4, Buchs CH-9471, Switzerland.
Fabio Coccetti
Affiliation:
NOVAMEMS, 10 avenue de l'Europe, 31520 Ramonville Saint Agne, France. Phone: +33 561274688.
Robert Plana
Affiliation:
LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse, France. Université de Toulouse UPS, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
*
Corresponding author: A. Broué Email: adrien.broue@novamems.com

Abstract

A systematic comparison between several pairs of contact materials based on an innovative methodology early developed at NOVA MEMS is hereby presented. The technique exploits a commercial nanoindenter coupled with electrical measurements, and test vehicles specially designed to investigate the underlying physics driving the surface-related failure modes. The study provides a comprehensive understanding of micro-contact behavior with respect to the impact of low-to-medium levels of electrical current. The decrease of the contact resistance, when the contact force increases, is measured for contact pairs of soft material (Au/Au contact), harder materials (Ru/Ru and Rh/Rh contacts), and mixed configuration (Au/Ru and Au/Ni contacts). The contact temperatures have been calculated and compared with the theoretical values of softening temperature for each couple of contact materials. No softening behavior has been observed for mixed contact at the theoretical softening temperature of both materials. The enhanced resilience of the bimetallic contacts Au/Ru and Au/Ni is demonstrated.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Mardivirin, D.; Bouyge, D.; Pothier, A.; Crunteanu-Stanescu, A.; Blondy, P.: Reliability study of dielectric less electrostatic actuators: application to MEMS switches, in Caneus MNT Reliability Workshop 2008, France, 2008.CrossRefGoogle Scholar
[2]Broue, A. et al. : Characterization of Au/Au, Au/Ru and Ru/Ru ohmic contacts in MEMS switches improved by a novel methodology. Proc. SPIE, 7592 (2010), 75920A.CrossRefGoogle Scholar
[3]Broue, A. et al. : Thermal and topological characterization of Au, Ru and Au/Ru based MEMS contacts using nanoindenter, in Proc. of IEEE MEMS 2010, 2010, 544547.CrossRefGoogle Scholar
[4]Broue, A. et al. : Multi-physical characterization of micro-contact materials for MEMS switches, in Proc. 56th IEEE Holm Conf. on Electrical Contacts, 2010, 110.CrossRefGoogle Scholar
[5]Holm, R.: Electrical Contacts – Theory and Applications, 4th ed., Springer-Verlag, Berlin, Germany, 1967.CrossRefGoogle Scholar
[6]Jensen, B.D.; Chow, L.L.; Huang, K.; Saitou, K.; Volakis, J.L.; Kurabayashi, K.: Effect of nanoscale heating on electrical transport in RF MEMS switch contacts. J. Microelectromech. Syst., 14 (5) (2005), 935946.CrossRefGoogle Scholar
[7]Kwon, H. et al. : Investigation of the electrical contact behaviours in Au-to-Au thin-film contacts for RF MEMS switches. J. Micromech. Microeng., (18) (2008), 19.Google Scholar
[8]Brown, C.; Rezvanian, O.; Zikry, M.A.; Krim, J.: Temperature dependence of asperity contact and contact resistance in gold RF MEMS switches. J. Micromech. Microeng., 19 (2009), 025006.CrossRefGoogle Scholar
[9]Lide, D.R.: CRC Handbook of Chemistry and Physics, 90e éd., CRC Press Inc, Relié, 2009, 2804pp. (ISBN 978-1-420-09084-0).Google Scholar
[10]Ma, Q. et al. : Metal contact reliability of RF MEMS switches, in Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VI, Proc. of the SPIE, 2007, vol. 6463, 646305646305.CrossRefGoogle Scholar
[11]Patton, S.T.; Zabinski, J.S.: Fundamental studies of Au contacts in MEMS RF switches. Tribol. Lett., 18 (2005), 215230.CrossRefGoogle Scholar
[12]Ke, F.; Miao, J.; Oberhammer, J.: A ruthenium-based multi-metal contact RF MEMS switch with a corrugated diaphragm. IEEE/ASME J. Electromech. Syst., 17 (6) (2008), 14471459.Google Scholar
[13]McGruer, N.E.; Adams, G.G.; Chen, L.; Guo, Z.J.; Du, Y.: Mechanical, thermal, and material influences on ohmic-contact-type MEMS switch operation, in 19th IEEE Int. Conf. on Micro Electro Mechanical Systems, 2006. MEMS 2006, Istanbul, 2006, 230233.Google Scholar
[14]Schimkat, J.: Contact materials for microrelays, in The Eleventh Annual Int. Workshop on Micro Electro Mechanical Systems, MEMS 98 Proc., 1998, 190194.Google Scholar
[15]Umemoto, T. et al. : The behavior of surface oxide film on ruthenium and rhodium plated contacts. IEEE Trans. Compon. Hybrids Manuf. Technol., CHMT, 4 (4) (1978).Google Scholar
[16]Slade, P.G.: Electrical Contacts: Principles and Applications, 1999, 3440.CrossRefGoogle Scholar
[17]Stachowiak, G.W.; Batchelor, A.W.; Stachowiak, G.W.: Engineering Tribology, 2001, Elsevier Butterworth-Heinemann, 2730.Google Scholar