Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T06:04:20.893Z Has data issue: false hasContentIssue false

60 GHz current gain cut-off frequency graphene nanoribbon FET

Published online by Cambridge University Press:  19 October 2010

Nan Meng
Affiliation:
IEMN – CNRS 8520, Avenue Poincare, 59652 Villeneuve d'ASCQ Cedex, France. Phone: +33 3 20 19 78 41.
Francsico-Javier Ferrer
Affiliation:
IEMN – CNRS 8520, Avenue Poincare, 59652 Villeneuve d'ASCQ Cedex, France. Phone: +33 3 20 19 78 41.
Dominique Vignaud
Affiliation:
IEMN – CNRS 8520, Avenue Poincare, 59652 Villeneuve d'ASCQ Cedex, France. Phone: +33 3 20 19 78 41.
Gilles Dambrine
Affiliation:
IEMN – CNRS 8520, Avenue Poincare, 59652 Villeneuve d'ASCQ Cedex, France. Phone: +33 3 20 19 78 41.
Henri Happy*
Affiliation:
IEMN – CNRS 8520, Avenue Poincare, 59652 Villeneuve d'ASCQ Cedex, France. Phone: +33 3 20 19 78 41.
*
Corresponding author: H. Happy Email: henri.happy@iemn.univ-lille1.fr

Abstract

We report investigations on the fabrication and characterization of graphene nanoribbon (GNR) field-effect transistors. Graphene layers are obtained from the thermal decomposition of a Si-face 4H-SiC substrate. To achieve high dynamic performance, a structure with an array of GNR connected in parallel was fabricated by e-beam lithography. The best intrinsic current gain cut-off frequency of 60 GHz and maximum oscillation frequency of 28 GHz were achieved. This study demonstrates the exciting potential of GNR in high-frequency electronics.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Novoselov, K.S. et al. : Electric field effect in atomically thin carbon films. Science, 306 (2004), 666669. DOI: 10.1126/science.1102896.CrossRefGoogle ScholarPubMed
[2]Morozov, S.V. et al. : Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 100 (2008), 016602016604. DOI: 10.1103/PhysRevLett.100.016602.CrossRefGoogle ScholarPubMed
[3]Bolotin, K. et al. : Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146 (2008), 351355. DOI: 10.1016/j.ssc.2008.02.024.CrossRefGoogle Scholar
[4]Liao, L. et al. : High-speed graphene transistors with a self-aligned nanowire gate. Nature, 467 (2010), 305308. DOI: 10.1038/nature09405.CrossRefGoogle ScholarPubMed
[5]Lin, Y. et al. : 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327 (2010), 662. DOI: 10.1126/science.1184289.Google Scholar
[6]Meric, I.; Baklitskaya, N.; Kim, P.; Shepard, K.: 2008 RF performance of top-gated, zero-bandgap graphene field-effect transistors, In IEEE Int. Electron Devices Meeting, San Francisco, CA, 2008. DOI: 10.1109/IEDM.2008.4796738.Google Scholar
[7]Zhu, J.; Woo, J.: A novel graphene channel field effect transistor with Schottky tunneling source and drain, in 37th European Solid State Device Research Conf., Germany, 2007. DOI: 10.1109/ESSDERC.2007.4430923.Google Scholar
[8]Moon, J.S. et al. : Top-gated epitaxial graphene FETs on Si-Face SiC wafers with a peak transconductance of 600 mS/mm. IEEE Electron Device Lett., 31 (2010), 260262. DOI: 10.1109/LED.2010.2040132.CrossRefGoogle Scholar
[9]Kedzierski, J. et al. : Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition. IEEE Electron Device Lett., 30 (2009), 745747. DOI: 10.1109/LED.2009. 2020615.CrossRefGoogle Scholar
[10]Wu, Y.Q. et al. : Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett., 92 (2008), 092102. DOI: 10.1063/1.2889959.CrossRefGoogle Scholar
[11]Lemme, M. et al. : Mobility in graphene double gate field effect transistors. Solid-State Electron., 52 (2008), 514518. DOI: 10.1016/j.sse.2007.10.054.CrossRefGoogle Scholar
[12]Xia, F.; Farmer, D.B.; Lin, Y.; Avouris, P.: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett., 10 (2010), 715718. DOI: 10.1021/nl9039636.Google Scholar
[13]Forbeaux, I.; Themlin, J.; Debever, J.: Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B (Condens. Matter Mater. Phys.), 58 (1998), 1639616406.CrossRefGoogle Scholar
[14]Berger, C. et al. : Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 108 (2004), 1991219916. DOI: 10.1021/jp040650f.CrossRefGoogle Scholar
[15]Rollings, E. et al. : Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids, 67 (2006), 21722177. DOI: 10.1016/j.jpcs.2006.05.010.CrossRefGoogle Scholar
[16]Oshima, C.; Nagashima, A.: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condens. Matter, 9 (1997), 120.Google Scholar
[17]Cao, H. et al. : Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties. J. Appl. Phys., 107 (2010), 044310. DOI: 10.1063/1.3309018CrossRefGoogle Scholar
[18]Ferrer, Fernandez, J.; Moreau, E.; Vignaud, D.; Godey, S.; Wallart, X.: Atomic scale flattening, step formation and graphitization blocking on 6H- and 4H-SiC{0 0 0 1} surfaces under Si flux. Semicond. Sci. Technol., 24 (2009), 125014. DOI: 10.1088/0268–1242/24/12/125014.Google Scholar
[19]Nougaret, L. et al. : 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett., 94 (2009), 243505–3. DOI: 10.1063/1.3155212.Google Scholar